Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson

Maternal and infant mortality are two correlated subjects, because during pregnancy the mother's placenta distributes nutrients to the fetus so the baby born is affected by the condition of his mother. Central Java has significant maternal and neonatal mortality rates in Indonesia. In this case...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mutiara Widhika Astuti, A’yunin Sofro
Formato: article
Lenguaje:EN
Publicado: Department of Mathematics, UIN Sunan Ampel Surabaya 2018
Materias:
Acceso en línea:https://doaj.org/article/92096b647e294b6581cbbe2b3a6bfb56
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:92096b647e294b6581cbbe2b3a6bfb56
record_format dspace
spelling oai:doaj.org-article:92096b647e294b6581cbbe2b3a6bfb562021-12-02T16:56:05ZAnalisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson2527-31592527-316710.15642/mantik.2018.4.2.110-115https://doaj.org/article/92096b647e294b6581cbbe2b3a6bfb562018-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/362https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Maternal and infant mortality are two correlated subjects, because during pregnancy the mother's placenta distributes nutrients to the fetus so the baby born is affected by the condition of his mother. Central Java has significant maternal and neonatal mortality rates in Indonesia. In this case, need a research to analyze the factors that influence maternal and infant mortality using Bivariate Poisson Regression (BPR) method. BPR is the right method because it can reconfirm two data that are correlated with Poisson distribution. This study produced three models. The first model is the maternal mortality rate has several significant factors, including pregnant women implementing the K1 and K4 program, vitamin A to postpartum mothers, pregnant women getting Fe tablets, and midwifery handle complications. The second model is the infant deaths that have factors pregnant women implementing the K4 program, helped assistance by medical team, postpartum mothers receiving vitamin A, pregnant women getting Fe tablets, complications handled by midwifery, and KB participants. The final model involves maternal and infant mortality. Significant factors are pregnant women implementing the K1 program, pregnant women implementing the K4 program, giving vitamin A to postpartum mothers, and KB participants.Mutiara Widhika AstutiA’yunin SofroDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleMaternal Death, Infant Death, PBRMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 4, Iss 2, Pp 110-115 (2018)
institution DOAJ
collection DOAJ
language EN
topic Maternal Death, Infant Death, PBR
Mathematics
QA1-939
spellingShingle Maternal Death, Infant Death, PBR
Mathematics
QA1-939
Mutiara Widhika Astuti
A’yunin Sofro
Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson
description Maternal and infant mortality are two correlated subjects, because during pregnancy the mother's placenta distributes nutrients to the fetus so the baby born is affected by the condition of his mother. Central Java has significant maternal and neonatal mortality rates in Indonesia. In this case, need a research to analyze the factors that influence maternal and infant mortality using Bivariate Poisson Regression (BPR) method. BPR is the right method because it can reconfirm two data that are correlated with Poisson distribution. This study produced three models. The first model is the maternal mortality rate has several significant factors, including pregnant women implementing the K1 and K4 program, vitamin A to postpartum mothers, pregnant women getting Fe tablets, and midwifery handle complications. The second model is the infant deaths that have factors pregnant women implementing the K4 program, helped assistance by medical team, postpartum mothers receiving vitamin A, pregnant women getting Fe tablets, complications handled by midwifery, and KB participants. The final model involves maternal and infant mortality. Significant factors are pregnant women implementing the K1 program, pregnant women implementing the K4 program, giving vitamin A to postpartum mothers, and KB participants.
format article
author Mutiara Widhika Astuti
A’yunin Sofro
author_facet Mutiara Widhika Astuti
A’yunin Sofro
author_sort Mutiara Widhika Astuti
title Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson
title_short Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson
title_full Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson
title_fullStr Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson
title_full_unstemmed Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson
title_sort analisis faktor-faktor yang mempengaruhi jumlah kematian ibu dan bayi di provinsi jawa tengah menggunakan regresi bivariat poisson
publisher Department of Mathematics, UIN Sunan Ampel Surabaya
publishDate 2018
url https://doaj.org/article/92096b647e294b6581cbbe2b3a6bfb56
work_keys_str_mv AT mutiarawidhikaastuti analisisfaktorfaktoryangmempengaruhijumlahkematianibudanbayidiprovinsijawatengahmenggunakanregresibivariatpoisson
AT ayuninsofro analisisfaktorfaktoryangmempengaruhijumlahkematianibudanbayidiprovinsijawatengahmenggunakanregresibivariatpoisson
_version_ 1718382812839542784