Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson
Maternal and infant mortality are two correlated subjects, because during pregnancy the mother's placenta distributes nutrients to the fetus so the baby born is affected by the condition of his mother. Central Java has significant maternal and neonatal mortality rates in Indonesia. In this case...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92096b647e294b6581cbbe2b3a6bfb56 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:92096b647e294b6581cbbe2b3a6bfb56 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:92096b647e294b6581cbbe2b3a6bfb562021-12-02T16:56:05ZAnalisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson2527-31592527-316710.15642/mantik.2018.4.2.110-115https://doaj.org/article/92096b647e294b6581cbbe2b3a6bfb562018-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/362https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Maternal and infant mortality are two correlated subjects, because during pregnancy the mother's placenta distributes nutrients to the fetus so the baby born is affected by the condition of his mother. Central Java has significant maternal and neonatal mortality rates in Indonesia. In this case, need a research to analyze the factors that influence maternal and infant mortality using Bivariate Poisson Regression (BPR) method. BPR is the right method because it can reconfirm two data that are correlated with Poisson distribution. This study produced three models. The first model is the maternal mortality rate has several significant factors, including pregnant women implementing the K1 and K4 program, vitamin A to postpartum mothers, pregnant women getting Fe tablets, and midwifery handle complications. The second model is the infant deaths that have factors pregnant women implementing the K4 program, helped assistance by medical team, postpartum mothers receiving vitamin A, pregnant women getting Fe tablets, complications handled by midwifery, and KB participants. The final model involves maternal and infant mortality. Significant factors are pregnant women implementing the K1 program, pregnant women implementing the K4 program, giving vitamin A to postpartum mothers, and KB participants.Mutiara Widhika AstutiA’yunin SofroDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleMaternal Death, Infant Death, PBRMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 4, Iss 2, Pp 110-115 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Maternal Death, Infant Death, PBR Mathematics QA1-939 |
spellingShingle |
Maternal Death, Infant Death, PBR Mathematics QA1-939 Mutiara Widhika Astuti A’yunin Sofro Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson |
description |
Maternal and infant mortality are two correlated subjects, because during pregnancy the mother's placenta distributes nutrients to the fetus so the baby born is affected by the condition of his mother. Central Java has significant maternal and neonatal mortality rates in Indonesia. In this case, need a research to analyze the factors that influence maternal and infant mortality using Bivariate Poisson Regression (BPR) method. BPR is the right method because it can reconfirm two data that are correlated with Poisson distribution. This study produced three models. The first model is the maternal mortality rate has several significant factors, including pregnant women implementing the K1 and K4 program, vitamin A to postpartum mothers, pregnant women getting Fe tablets, and midwifery handle complications. The second model is the infant deaths that have factors pregnant women implementing the K4 program, helped assistance by medical team, postpartum mothers receiving vitamin A, pregnant women getting Fe tablets, complications handled by midwifery, and KB participants. The final model involves maternal and infant mortality. Significant factors are pregnant women implementing the K1 program, pregnant women implementing the K4 program, giving vitamin A to postpartum mothers, and KB participants. |
format |
article |
author |
Mutiara Widhika Astuti A’yunin Sofro |
author_facet |
Mutiara Widhika Astuti A’yunin Sofro |
author_sort |
Mutiara Widhika Astuti |
title |
Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson |
title_short |
Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson |
title_full |
Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson |
title_fullStr |
Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson |
title_full_unstemmed |
Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson |
title_sort |
analisis faktor-faktor yang mempengaruhi jumlah kematian ibu dan bayi di provinsi jawa tengah menggunakan regresi bivariat poisson |
publisher |
Department of Mathematics, UIN Sunan Ampel Surabaya |
publishDate |
2018 |
url |
https://doaj.org/article/92096b647e294b6581cbbe2b3a6bfb56 |
work_keys_str_mv |
AT mutiarawidhikaastuti analisisfaktorfaktoryangmempengaruhijumlahkematianibudanbayidiprovinsijawatengahmenggunakanregresibivariatpoisson AT ayuninsofro analisisfaktorfaktoryangmempengaruhijumlahkematianibudanbayidiprovinsijawatengahmenggunakanregresibivariatpoisson |
_version_ |
1718382812839542784 |