A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function
The object of this paper is to derive a double integral in terms of the Hurwitz–Lerch zeta function. Almost all Hurwitz–Lerch zeta functions have an asymmetrical zero-distribution. Special cases are evaluated in terms of fundamental constants. All the results in this work are new.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/923024447c5a48aa90e76dfd9ae7a813 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:923024447c5a48aa90e76dfd9ae7a813 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:923024447c5a48aa90e76dfd9ae7a8132021-11-25T19:05:46ZA Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function10.3390/sym131119832073-8994https://doaj.org/article/923024447c5a48aa90e76dfd9ae7a8132021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/1983https://doaj.org/toc/2073-8994The object of this paper is to derive a double integral in terms of the Hurwitz–Lerch zeta function. Almost all Hurwitz–Lerch zeta functions have an asymmetrical zero-distribution. Special cases are evaluated in terms of fundamental constants. All the results in this work are new.Robert ReynoldsAllan StaufferMDPI AGarticleLerch functiondouble integralCatalan’s constantAprey’s constantMathematicsQA1-939ENSymmetry, Vol 13, Iss 1983, p 1983 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Lerch function double integral Catalan’s constant Aprey’s constant Mathematics QA1-939 |
spellingShingle |
Lerch function double integral Catalan’s constant Aprey’s constant Mathematics QA1-939 Robert Reynolds Allan Stauffer A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function |
description |
The object of this paper is to derive a double integral in terms of the Hurwitz–Lerch zeta function. Almost all Hurwitz–Lerch zeta functions have an asymmetrical zero-distribution. Special cases are evaluated in terms of fundamental constants. All the results in this work are new. |
format |
article |
author |
Robert Reynolds Allan Stauffer |
author_facet |
Robert Reynolds Allan Stauffer |
author_sort |
Robert Reynolds |
title |
A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function |
title_short |
A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function |
title_full |
A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function |
title_fullStr |
A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function |
title_full_unstemmed |
A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function |
title_sort |
double logarithmic transform involving the exponential and polynomial functions expressed in terms of the hurwitz–lerch zeta function |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/923024447c5a48aa90e76dfd9ae7a813 |
work_keys_str_mv |
AT robertreynolds adoublelogarithmictransforminvolvingtheexponentialandpolynomialfunctionsexpressedintermsofthehurwitzlerchzetafunction AT allanstauffer adoublelogarithmictransforminvolvingtheexponentialandpolynomialfunctionsexpressedintermsofthehurwitzlerchzetafunction AT robertreynolds doublelogarithmictransforminvolvingtheexponentialandpolynomialfunctionsexpressedintermsofthehurwitzlerchzetafunction AT allanstauffer doublelogarithmictransforminvolvingtheexponentialandpolynomialfunctionsexpressedintermsofthehurwitzlerchzetafunction |
_version_ |
1718410291143770112 |