Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches
A vast amount of data is generated every second for microblogs, content sharing via social media sites, and social networking. Twitter is an essential popular microblog where people voice their opinions about daily issues. Recently, analyzing these opinions is the primary concern of Sentiment analys...
Guardado en:
Autores principales: | Waqas Haider Bangyal, Rukhma Qasim, Najeeb ur Rehman, Zeeshan Ahmad, Hafsa Dar, Laiqa Rukhsar, Zahra Aman, Jamil Ahmad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9239b27f16d54fe29693fee0fff100b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time clinician text feeds from electronic health records
por: James T. H. Teo, et al.
Publicado: (2021) -
Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes
por: Beau Norgeot, et al.
Publicado: (2020) -
Randomized controlled study using text messages to help connect new medicaid beneficiaries to primary care
por: David M. Levine, et al.
Publicado: (2021) -
Effect of a text message intervention to reduce hazardous drinking among injured patients discharged from a trauma ward: a randomized controlled trial
por: Sarah Sharpe, et al.
Publicado: (2018) -
Determinants of individuals' belief in fake news: A scoping review determinants of belief in fake news.
por: Kirill Bryanov, et al.
Publicado: (2021)