In vivo MRI with Concurrent Excitation and Acquisition using Automated Active Analog Cancellation

Abstract Magnetic resonance imaging (MRI) provides excellent cross-sectional images of the soft tissues in patients. Unfortunately, MRI is intrinsically slow, it exposes patients to severe acoustic noise levels, and is limited in the visualization of certain tissues such as bone. These limitations a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Caglar Özen, Ergin Atalar, Jan G. Korvink, Michael Bock
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/923d0966578544bfae5e3bcce7ddadbe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Magnetic resonance imaging (MRI) provides excellent cross-sectional images of the soft tissues in patients. Unfortunately, MRI is intrinsically slow, it exposes patients to severe acoustic noise levels, and is limited in the visualization of certain tissues such as bone. These limitations are partly caused by the timing structure of the MRI exam which first generates the MR signal by a strong radio-frequency excitation and later acquires the weak MRI signal. Concurrent excitation and acquisition (CEA) can overcome these limitations, but is extremely challenging due to the huge intensity difference between transmit and receive signal (up to 100 dB). To suppress the strong transmit signals during signal reception, a fully automated analog cancellation unit was designed. On a 3 Tesla clinical MRI system we achieved an on-resonance analog isolation of 90 dB between the transmit and receive path, so that CEA images of the head and the extremities could be acquired with an acquisition efficiency of higher than 90% at sound pressure levels close to background noise. CEA with analog cancellation might provide new opportunities for MRI in tissues with very short T2 relaxation times, and it offers a silent and time-efficient MRI acquisition.