mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus

Anan Yu,1,* Jieqiong Lv,1,* Fang Yuan,1 Zihua Xia,1 Kaiyan Fan,1 Gang Chen,1,2 Jialin Ren,1 Cuicui Lin,1 Shijie Wei,1,2 Fan Yang1,2 1Department of Pharmaceutics, 2Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yu A, Lv J, Yuan F, Xia Z, Fan K, Chen G, Ren J, Lin C, Wei S, Yang F
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/923e727a12b840b6a08edf38485a8075
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:923e727a12b840b6a08edf38485a8075
record_format dspace
spelling oai:doaj.org-article:923e727a12b840b6a08edf38485a80752021-12-02T05:08:58ZmPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus1178-2013https://doaj.org/article/923e727a12b840b6a08edf38485a80752017-11-01T00:00:00Zhttps://www.dovepress.com/mpeg-platpgs-mixed-micelles-via-intranasal-administration-improved-the-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Anan Yu,1,* Jieqiong Lv,1,* Fang Yuan,1 Zihua Xia,1 Kaiyan Fan,1 Gang Chen,1,2 Jialin Ren,1 Cuicui Lin,1 Shijie Wei,1,2 Fan Yang1,2 1Department of Pharmaceutics, 2Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China *These authors contributed equally to this work Purpose: This study aimed to develop a novel methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA)/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) mixed micelle drug delivery system to improve lamotrigine (LTG) distribution in the hippocampus.Methods: LTG-loaded mPEG-PLA/TPGS mixed micelles and LTG-loaded mPEG-PLA micelles were formulated, and their characteristics, particle size, surface morphology, and release behavior in vitro were researched. Then, a microdialysis sampling technique coupled with two validated chromatographic systems was developed for the continuous measurement of the protein-unbound form of LTG in the rat plasma and hippocampus after administering two kinds of micelles and LTG solution intranasally. Results: The drug loading and mean size of LTG-loaded micelles and LTG-loaded mixed micelles prepared with optimal formulation were 36.44%±0.14%, 39.28%±0.26%, 122.9, and 183.5 nm, respectively, with a core–shell structure. The cumulative release rate in vivo of LTG-loaded mixed micelles was 84.21% at 24 hours and showed more sustained release while that of LTG-loaded micelles was 80.61% at 6 hours. The Tmax and area under concentration-time curve from zero to time of last quantifiable concentration of LTG solution, LTG-loaded micelles, and LTG-loaded mixed micelles were 55, 35, and 15 minutes and about 5,384, 16,500, and 25,245 (min·µg)/L in the hippocampus, respectively.Conclusion: The results revealed that LTG-loaded mPEG-PLA/TPGS mixed micelles enhanced the absorption of LTG at the nasal cavity and reduced the efflux of LTG in the brain, suggesting that the function of TPGS inhibited P-glycoprotein and LTG-loaded mPEG-PLA/TPGS mixed micelles had the potential to overcome refractory epilepsy. Keywords: epilepsy, intranasal administration, lamotrigine, P-glycoprotein, blood brain barrier, TPGSYu ALv JYuan FXia ZFan KChen GRen JLin CWei SYang FDove Medical PressarticleBioavailabilityepilepsyintranasal administrationlamotriginemixed micelleTPGSMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 8353-8362 (2017)
institution DOAJ
collection DOAJ
language EN
topic Bioavailability
epilepsy
intranasal administration
lamotrigine
mixed micelle
TPGS
Medicine (General)
R5-920
spellingShingle Bioavailability
epilepsy
intranasal administration
lamotrigine
mixed micelle
TPGS
Medicine (General)
R5-920
Yu A
Lv J
Yuan F
Xia Z
Fan K
Chen G
Ren J
Lin C
Wei S
Yang F
mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus
description Anan Yu,1,* Jieqiong Lv,1,* Fang Yuan,1 Zihua Xia,1 Kaiyan Fan,1 Gang Chen,1,2 Jialin Ren,1 Cuicui Lin,1 Shijie Wei,1,2 Fan Yang1,2 1Department of Pharmaceutics, 2Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China *These authors contributed equally to this work Purpose: This study aimed to develop a novel methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA)/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) mixed micelle drug delivery system to improve lamotrigine (LTG) distribution in the hippocampus.Methods: LTG-loaded mPEG-PLA/TPGS mixed micelles and LTG-loaded mPEG-PLA micelles were formulated, and their characteristics, particle size, surface morphology, and release behavior in vitro were researched. Then, a microdialysis sampling technique coupled with two validated chromatographic systems was developed for the continuous measurement of the protein-unbound form of LTG in the rat plasma and hippocampus after administering two kinds of micelles and LTG solution intranasally. Results: The drug loading and mean size of LTG-loaded micelles and LTG-loaded mixed micelles prepared with optimal formulation were 36.44%±0.14%, 39.28%±0.26%, 122.9, and 183.5 nm, respectively, with a core–shell structure. The cumulative release rate in vivo of LTG-loaded mixed micelles was 84.21% at 24 hours and showed more sustained release while that of LTG-loaded micelles was 80.61% at 6 hours. The Tmax and area under concentration-time curve from zero to time of last quantifiable concentration of LTG solution, LTG-loaded micelles, and LTG-loaded mixed micelles were 55, 35, and 15 minutes and about 5,384, 16,500, and 25,245 (min·µg)/L in the hippocampus, respectively.Conclusion: The results revealed that LTG-loaded mPEG-PLA/TPGS mixed micelles enhanced the absorption of LTG at the nasal cavity and reduced the efflux of LTG in the brain, suggesting that the function of TPGS inhibited P-glycoprotein and LTG-loaded mPEG-PLA/TPGS mixed micelles had the potential to overcome refractory epilepsy. Keywords: epilepsy, intranasal administration, lamotrigine, P-glycoprotein, blood brain barrier, TPGS
format article
author Yu A
Lv J
Yuan F
Xia Z
Fan K
Chen G
Ren J
Lin C
Wei S
Yang F
author_facet Yu A
Lv J
Yuan F
Xia Z
Fan K
Chen G
Ren J
Lin C
Wei S
Yang F
author_sort Yu A
title mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus
title_short mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus
title_full mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus
title_fullStr mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus
title_full_unstemmed mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus
title_sort mpeg-pla/tpgs mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus
publisher Dove Medical Press
publishDate 2017
url https://doaj.org/article/923e727a12b840b6a08edf38485a8075
work_keys_str_mv AT yua mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT lvj mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT yuanf mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT xiaz mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT fank mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT cheng mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT renj mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT linc mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT weis mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
AT yangf mpegplatpgsmixedmicellesviaintranasaladministrationimprovedthebioavailabilityoflamotrigineinthehippocampus
_version_ 1718400606212718592