Peak learning of mass spectrometry imaging data using artificial neural networks
The high dimensional and complex nature of mass spectrometry imaging (MSI) data poses challenges to downstream analyses. Here the authors show an application of artificial intelligence in mining MSI data revealing biologically relevant metabolomic and proteomic information from data acquired on diff...
Guardado en:
Autores principales: | Walid M. Abdelmoula, Begona Gimenez-Cassina Lopez, Elizabeth C. Randall, Tina Kapur, Jann N. Sarkaria, Forest M. White, Jeffrey N. Agar, William M. Wells, Nathalie Y. R. Agar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9244c823f02b459a98d698b08982a133 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery
por: Sankha S. Basu, et al.
Publicado: (2021) -
Peak Area Consistency Evaluation in Gamma Spectrometry
por: Persson Henrik, et al.
Publicado: (2021) -
Optomechanical mass spectrometry
por: Marc Sansa, et al.
Publicado: (2020) - Journal of mass spectrometry
- Mass spectrometry reviews