Probing the gluon plasma with charm balance functions

Abstract Recent theoretical explanations for how hydrodynamic-like flow can build up quickly in small collision systems (hydrodynamization) has led to a microscopic picture of flow building up in a gluon-dominated phase before chemical equilibrium between quarks and gluons has been attained. The goa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sumit Basu, Peter Christiansen, Alice Ohlson, David Silvermyr
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/924a2f6d260b4bbead233f4c37018195
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Recent theoretical explanations for how hydrodynamic-like flow can build up quickly in small collision systems (hydrodynamization) has led to a microscopic picture of flow building up in a gluon-dominated phase before chemical equilibrium between quarks and gluons has been attained. The goal of this contribution to Offshell-2021 is to explore consequence of assuming a long-lived gluon-dominated phase, which we shall denote a gluon plasma (GP). As these consequences are naturally enhanced in a large systems, we assume and explore the extreme scenario in which a GP would be created in AA collisions and exist for significant time before the formation of a chemically-equilibrated quark-gluon plasma (QGP). The GP and its formation would be impossible to probe with light-quark hadrons, which are first produced later in this scenario. As charm quarks are produced early in the collision, they can circumvent the limitations of light quarks and we propose charm balance functions as an effective tool to test this idea and constrain the dynamics of the GP.