BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses.
High-field gradient-echo (GE) BOLD fMRI enables very high resolution imaging, and has great potential for detailed investigations of brain function. However, as spatial resolution increases, confounds due to signal from non-capillary vessels increasingly impact the fidelity of GE BOLD fMRI signals....
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/925c755736804ead953c40ecc80f3179 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:925c755736804ead953c40ecc80f3179 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:925c755736804ead953c40ecc80f31792021-11-18T08:01:22ZBOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses.1932-620310.1371/journal.pone.0054560https://doaj.org/article/925c755736804ead953c40ecc80f31792013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23336008/?tool=EBIhttps://doaj.org/toc/1932-6203High-field gradient-echo (GE) BOLD fMRI enables very high resolution imaging, and has great potential for detailed investigations of brain function. However, as spatial resolution increases, confounds due to signal from non-capillary vessels increasingly impact the fidelity of GE BOLD fMRI signals. Here we report on an assessment of the microvascular weighting of the GE BOLD response across the cortical depth in human cortex using spin-echo fMRI which is thought to be dominated by microvasculature (albeit not completely). BOLD responses were measured with a hemodynamic impulse response (HRF) obtained from the spin-echo (SE) and gradient-echo (GE) BOLD contrast using very short stimuli (0.25 s) and a fast event-related functional paradigm. We show that the onset (≈ 1.25 s) and the rising slope of the GE and SE HRFs are strikingly similar for voxels in deep gray matter presumably containing the most metabolically demanding neurons (layers III-IV). This finding provides a strong indication that the onset of the GE HRF in deep gray matter is predominantly associated with microvasculature.Jeroen C W SieroNick F RamseyHans HoogduinDennis W J KlompPeter R LuijtenNatalia PetridouPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 1, p e54560 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jeroen C W Siero Nick F Ramsey Hans Hoogduin Dennis W J Klomp Peter R Luijten Natalia Petridou BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses. |
description |
High-field gradient-echo (GE) BOLD fMRI enables very high resolution imaging, and has great potential for detailed investigations of brain function. However, as spatial resolution increases, confounds due to signal from non-capillary vessels increasingly impact the fidelity of GE BOLD fMRI signals. Here we report on an assessment of the microvascular weighting of the GE BOLD response across the cortical depth in human cortex using spin-echo fMRI which is thought to be dominated by microvasculature (albeit not completely). BOLD responses were measured with a hemodynamic impulse response (HRF) obtained from the spin-echo (SE) and gradient-echo (GE) BOLD contrast using very short stimuli (0.25 s) and a fast event-related functional paradigm. We show that the onset (≈ 1.25 s) and the rising slope of the GE and SE HRFs are strikingly similar for voxels in deep gray matter presumably containing the most metabolically demanding neurons (layers III-IV). This finding provides a strong indication that the onset of the GE HRF in deep gray matter is predominantly associated with microvasculature. |
format |
article |
author |
Jeroen C W Siero Nick F Ramsey Hans Hoogduin Dennis W J Klomp Peter R Luijten Natalia Petridou |
author_facet |
Jeroen C W Siero Nick F Ramsey Hans Hoogduin Dennis W J Klomp Peter R Luijten Natalia Petridou |
author_sort |
Jeroen C W Siero |
title |
BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses. |
title_short |
BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses. |
title_full |
BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses. |
title_fullStr |
BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses. |
title_full_unstemmed |
BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses. |
title_sort |
bold specificity and dynamics evaluated in humans at 7 t: comparing gradient-echo and spin-echo hemodynamic responses. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/925c755736804ead953c40ecc80f3179 |
work_keys_str_mv |
AT jeroencwsiero boldspecificityanddynamicsevaluatedinhumansat7tcomparinggradientechoandspinechohemodynamicresponses AT nickframsey boldspecificityanddynamicsevaluatedinhumansat7tcomparinggradientechoandspinechohemodynamicresponses AT hanshoogduin boldspecificityanddynamicsevaluatedinhumansat7tcomparinggradientechoandspinechohemodynamicresponses AT denniswjklomp boldspecificityanddynamicsevaluatedinhumansat7tcomparinggradientechoandspinechohemodynamicresponses AT peterrluijten boldspecificityanddynamicsevaluatedinhumansat7tcomparinggradientechoandspinechohemodynamicresponses AT nataliapetridou boldspecificityanddynamicsevaluatedinhumansat7tcomparinggradientechoandspinechohemodynamicresponses |
_version_ |
1718422617454542848 |