Aberrant plasticity of peripheral sensory axons in a painful neuropathy

Abstract Neuronal cells express considerable plasticity responding to environmental cues, in part, through subcellular mRNA regulation. Here we report on the extensive changes in distribution of mRNAs in the cell body and axon compartments of peripheral sensory neurons and the 3′ untranslated region...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takashi Hirai, Yatendra Mulpuri, Yanbing Cheng, Zheng Xia, Wei Li, Supanigar Ruangsri, Igor Spigelman, Ichiro Nishimura
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/92648845e8ef4cd8b775e4de3fde312b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Neuronal cells express considerable plasticity responding to environmental cues, in part, through subcellular mRNA regulation. Here we report on the extensive changes in distribution of mRNAs in the cell body and axon compartments of peripheral sensory neurons and the 3′ untranslated region (3′UTR) landscapes after unilateral sciatic nerve entrapment (SNE) injury in rats. Neuronal cells dissociated from SNE-injured and contralateral L4 and L5 dorsal root ganglia were cultured in a compartmentalized system. Axonal and cell body RNA samples were separately subjected to high throughput RNA sequencing (RNA-Seq). The injured axons exhibited enrichment of mRNAs related to protein synthesis and nerve regeneration. Lengthening of 3′UTRs was more prevalent in the injured axons, including the newly discovered alternative cleavage and polyadenylation of NaV1.8 mRNA. Alternative polyadenylation was largely independent from the relative abundance of axonal mRNAs; but they were highly clustered in functional pathways related to RNA granule formation in the injured axons. These RNA-Seq data analyses indicate that peripheral nerve injury may result in highly selective mRNA enrichment in the affected axons with 3′UTR alterations potentially contributing to the mechanism of neuropathic pain.