BreakNet: detecting deletions using long reads and a deep learning approach
Abstract Background Structural variations (SVs) occupy a prominent position in human genetic diversity, and deletions form an important type of SV that has been suggested to be associated with genetic diseases. Although various deletion calling methods based on long reads have been proposed, a new a...
Guardado en:
Autores principales: | Junwei Luo, Hongyu Ding, Jiquan Shen, Haixia Zhai, Zhengjiang Wu, Chaokun Yan, Huimin Luo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9283c944fedc46f89e94543b6169d296 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dimethyl Fumarate Ameliorates Nucleus Pulposus Cell Dysfunction through Activating the Nrf2/HO-1 Pathway in Intervertebral Disc Degeneration
por: Ruihong Wang, et al.
Publicado: (2021) -
Research on AR-AKF Model Denoising of the EMG Signal
por: Sijia Chen, et al.
Publicado: (2021) -
miR-183-5p Aggravates Breast Cancer Development via Mediation of RGS2
por: Chihua Wu, et al.
Publicado: (2021) -
Prognostic and Therapeutic Significance of Circulating Tumor Cell Phenotype Detection Based on Epithelial-Mesenchymal Transition Markers in Early and Midstage Colorectal Cancer First-Line Chemotherapy
por: Guang Lu, et al.
Publicado: (2021) -
Multitask Interactive Attention Learning Model Based on Hand Images for Assisting Chinese Medicine in Predicting Myocardial Infarction
por: Qida Wang, et al.
Publicado: (2021)