GraphDDP: a graph-embedding approach to detect differentiation pathways in single-cell-data using prior class knowledge
Inference and representation of differentiation trajectories from single cell RNA-seq data remains a challenge. Here, the authors offer a visualization approach that captures both continuous differentiation trajectories and discrete clusters representing metastable states along the trajectories.
Guardado en:
Autores principales: | Fabrizio Costa, Dominic Grün, Rolf Backofen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92926193d3624cef9115605b6d25e5c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Knowledge Graph Embedding Technology: A Review
por: SHU Shitai, LI Song+, HAO Xiaohong, ZHANG Liping
Publicado: (2021) -
Approaches to measure class importance in Knowledge Graphs.
por: Daniel Fernández-Álvarez, et al.
Publicado: (2021) -
A new class of graceful graphs: k-enriched fan graphs and their characterisations
por: Haviar,M., et al.
Publicado: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
por: Won-Min Song, et al.
Publicado: (2012) -
Graph Embedding for Scholar Recommendation in Academic Social Networks
por: Chengzhe Yuan, et al.
Publicado: (2021)