An accurate and robust imputation method scImpute for single-cell RNA-seq data
Despite being widely performed in exploring cell heterogeneity and gene expression stochasticity, single cell RNA-seq analysis is complicated by excess zero counts (dropouts). Here, Li and Li develop scImpute for statistical imputation of dropouts in scRNA-seq data.
Guardado en:
Autores principales: | Wei Vivian Li, Jingyi Jessica Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/929c4a6aa64242ada152b435bb8e17f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
por: Xiutao Pan, et al.
Publicado: (2021) -
SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data.
por: Jing Qi, et al.
Publicado: (2021) -
Accurate imputation of human leukocyte antigens with CookHLA
por: Seungho Cook, et al.
Publicado: (2021) -
Deep generative neural network for accurate drug response imputation
por: Peilin Jia, et al.
Publicado: (2021) -
Multiple imputation with compatibility for high-dimensional data.
por: Faisal Maqbool Zahid, et al.
Publicado: (2021)