Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization

Using a chiral catalyst to override the innate stereochemical outcome of a diastereoselective process is a challenging task. Here, the authors use theory and experiment to develop a cycloisomerization where the enantioselectivity is driven by the electronic nature of the ligand regardless of the rea...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: R. N. Straker, Q. Peng, A. Mekareeya, R. S. Paton, E. A. Anderson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/929fe8d744644847bf167208cfbb6c28
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:929fe8d744644847bf167208cfbb6c28
record_format dspace
spelling oai:doaj.org-article:929fe8d744644847bf167208cfbb6c282021-12-02T16:56:45ZComputational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization10.1038/ncomms101092041-1723https://doaj.org/article/929fe8d744644847bf167208cfbb6c282016-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms10109https://doaj.org/toc/2041-1723Using a chiral catalyst to override the innate stereochemical outcome of a diastereoselective process is a challenging task. Here, the authors use theory and experiment to develop a cycloisomerization where the enantioselectivity is driven by the electronic nature of the ligand regardless of the reaction's inherent diastereoselectivity.R. N. StrakerQ. PengA. MekareeyaR. S. PatonE. A. AndersonNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-9 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
R. N. Straker
Q. Peng
A. Mekareeya
R. S. Paton
E. A. Anderson
Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization
description Using a chiral catalyst to override the innate stereochemical outcome of a diastereoselective process is a challenging task. Here, the authors use theory and experiment to develop a cycloisomerization where the enantioselectivity is driven by the electronic nature of the ligand regardless of the reaction's inherent diastereoselectivity.
format article
author R. N. Straker
Q. Peng
A. Mekareeya
R. S. Paton
E. A. Anderson
author_facet R. N. Straker
Q. Peng
A. Mekareeya
R. S. Paton
E. A. Anderson
author_sort R. N. Straker
title Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization
title_short Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization
title_full Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization
title_fullStr Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization
title_full_unstemmed Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization
title_sort computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/929fe8d744644847bf167208cfbb6c28
work_keys_str_mv AT rnstraker computationalliganddesigninenantioanddiastereoselectiveynamide52cycloisomerization
AT qpeng computationalliganddesigninenantioanddiastereoselectiveynamide52cycloisomerization
AT amekareeya computationalliganddesigninenantioanddiastereoselectiveynamide52cycloisomerization
AT rspaton computationalliganddesigninenantioanddiastereoselectiveynamide52cycloisomerization
AT eaanderson computationalliganddesigninenantioanddiastereoselectiveynamide52cycloisomerization
_version_ 1718382754653011968