Conserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family

ABSTRACT Protein interactions are major driving forces behind the functional phenotypes of biological processes. As such, evolutionary footprints are reflected in system-level collections of protein-protein interactions (PPIs), i.e., protein interactomes. We conducted a comparative analysis of intra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anna Hernández Durán, Kay Grünewald, Maya Topf
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/92a158ae97334fd6ad3bbff1e1edbd74
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:92a158ae97334fd6ad3bbff1e1edbd74
record_format dspace
spelling oai:doaj.org-article:92a158ae97334fd6ad3bbff1e1edbd742021-12-02T19:46:17ZConserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family10.1128/mSystems.00295-192379-5077https://doaj.org/article/92a158ae97334fd6ad3bbff1e1edbd742019-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00295-19https://doaj.org/toc/2379-5077ABSTRACT Protein interactions are major driving forces behind the functional phenotypes of biological processes. As such, evolutionary footprints are reflected in system-level collections of protein-protein interactions (PPIs), i.e., protein interactomes. We conducted a comparative analysis of intraviral protein interactomes for representative species of each of the three subfamilies of herpesviruses (herpes simplex virus 1, human cytomegalovirus, and Epstein-Barr virus), which are highly prevalent etiologic agents of important human diseases. The intraviral interactomes were reconstructed by combining experimentally supported and computationally predicted protein-protein interactions. Using cross-species network comparison, we then identified family-wise conserved interactions and protein complexes, which we defined as a herpesviral “central” intraviral protein interactome. A large number of widely accepted conserved herpesviral protein complexes are present in this central intraviral interactome, encouragingly supporting the biological coherence of our results. Importantly, these protein complexes represent most, if not all, of the essential steps required during a productive life cycle. Hence the central intraviral protein interactome could plausibly represent a minimal infectious interactome of the herpesvirus family across a variety of hosts. Our data, which have been integrated into our herpesvirus interactomics database, HVint2.0, could assist in creating comprehensive system-level computational models of this viral lineage. IMPORTANCE Herpesviruses are an important socioeconomic burden for both humans and livestock. Throughout their long evolutionary history, individual herpesvirus species have developed remarkable host specificity, while collectively the Herpesviridae family has evolved to infect a large variety of eukaryotic hosts. The development of approaches to fight herpesvirus infections has been hampered by the complexity of herpesviruses’ genomes, proteomes, and structural features. The data and insights generated by our study add to the understanding of the functional organization of herpesvirus-encoded proteins, specifically of family-wise conserved features defining essential components required for a productive infectious cycle across different hosts, which can contribute toward the conceptualization of antiherpetic infection strategies with an effect on a broader range of target species. All of the generated data have been made freely available through our HVint2.0 database, a dedicated resource of curated herpesvirus interactomics purposely created to promote and assist future studies in the field.Anna Hernández DuránKay GrünewaldMaya TopfAmerican Society for Microbiologyarticleherpesvirusesintraviral networkprotein-protein interactionssystems biologyMicrobiologyQR1-502ENmSystems, Vol 4, Iss 5 (2019)
institution DOAJ
collection DOAJ
language EN
topic herpesviruses
intraviral network
protein-protein interactions
systems biology
Microbiology
QR1-502
spellingShingle herpesviruses
intraviral network
protein-protein interactions
systems biology
Microbiology
QR1-502
Anna Hernández Durán
Kay Grünewald
Maya Topf
Conserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family
description ABSTRACT Protein interactions are major driving forces behind the functional phenotypes of biological processes. As such, evolutionary footprints are reflected in system-level collections of protein-protein interactions (PPIs), i.e., protein interactomes. We conducted a comparative analysis of intraviral protein interactomes for representative species of each of the three subfamilies of herpesviruses (herpes simplex virus 1, human cytomegalovirus, and Epstein-Barr virus), which are highly prevalent etiologic agents of important human diseases. The intraviral interactomes were reconstructed by combining experimentally supported and computationally predicted protein-protein interactions. Using cross-species network comparison, we then identified family-wise conserved interactions and protein complexes, which we defined as a herpesviral “central” intraviral protein interactome. A large number of widely accepted conserved herpesviral protein complexes are present in this central intraviral interactome, encouragingly supporting the biological coherence of our results. Importantly, these protein complexes represent most, if not all, of the essential steps required during a productive life cycle. Hence the central intraviral protein interactome could plausibly represent a minimal infectious interactome of the herpesvirus family across a variety of hosts. Our data, which have been integrated into our herpesvirus interactomics database, HVint2.0, could assist in creating comprehensive system-level computational models of this viral lineage. IMPORTANCE Herpesviruses are an important socioeconomic burden for both humans and livestock. Throughout their long evolutionary history, individual herpesvirus species have developed remarkable host specificity, while collectively the Herpesviridae family has evolved to infect a large variety of eukaryotic hosts. The development of approaches to fight herpesvirus infections has been hampered by the complexity of herpesviruses’ genomes, proteomes, and structural features. The data and insights generated by our study add to the understanding of the functional organization of herpesvirus-encoded proteins, specifically of family-wise conserved features defining essential components required for a productive infectious cycle across different hosts, which can contribute toward the conceptualization of antiherpetic infection strategies with an effect on a broader range of target species. All of the generated data have been made freely available through our HVint2.0 database, a dedicated resource of curated herpesvirus interactomics purposely created to promote and assist future studies in the field.
format article
author Anna Hernández Durán
Kay Grünewald
Maya Topf
author_facet Anna Hernández Durán
Kay Grünewald
Maya Topf
author_sort Anna Hernández Durán
title Conserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family
title_short Conserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family
title_full Conserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family
title_fullStr Conserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family
title_full_unstemmed Conserved Central Intraviral Protein Interactome of the <italic toggle="yes">Herpesviridae</italic> Family
title_sort conserved central intraviral protein interactome of the <italic toggle="yes">herpesviridae</italic> family
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/92a158ae97334fd6ad3bbff1e1edbd74
work_keys_str_mv AT annahernandezduran conservedcentralintraviralproteininteractomeoftheitalictoggleyesherpesviridaeitalicfamily
AT kaygrunewald conservedcentralintraviralproteininteractomeoftheitalictoggleyesherpesviridaeitalicfamily
AT mayatopf conservedcentralintraviralproteininteractomeoftheitalictoggleyesherpesviridaeitalicfamily
_version_ 1718376039237812224