Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
Abstract Non-ideal thermodynamics of solid solutions can greatly impact materials degradation behavior. We have investigated an actinide silicate solid solution system (USiO4–ThSiO4), demonstrating that thermodynamic non-ideality follows a distinctive, atomic-scale disordering process, which is usua...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92aa8949682b40bbac3d6d8693d80fc1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Non-ideal thermodynamics of solid solutions can greatly impact materials degradation behavior. We have investigated an actinide silicate solid solution system (USiO4–ThSiO4), demonstrating that thermodynamic non-ideality follows a distinctive, atomic-scale disordering process, which is usually considered as a random distribution. Neutron total scattering implemented by pair distribution function analysis confirmed a random distribution model for U and Th in first three coordination shells; however, a machine-learning algorithm suggested heterogeneous U and Th clusters at nanoscale (~2 nm). The local disorder and nanosized heterogeneous is an example of the non-ideality of mixing that has an electronic origin. Partial covalency from the U/Th 5f–O 2p hybridization promotes electron transfer during mixing and leads to local polyhedral distortions. The electronic origin accounts for the strong non-ideality in thermodynamic parameters that extends the stability field of the actinide silicates in nature and under typical nuclear waste repository conditions. |
---|