Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions

Abstract Non-ideal thermodynamics of solid solutions can greatly impact materials degradation behavior. We have investigated an actinide silicate solid solution system (USiO4–ThSiO4), demonstrating that thermodynamic non-ideality follows a distinctive, atomic-scale disordering process, which is usua...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. Marcial, Y. Zhang, X. Zhao, H. Xu, A. Mesbah, E. T. Nienhuis, S. Szenknect, J. C. Neuefeind, J. Lin, L. Qi, A. A. Migdisov, R. C. Ewing, N. Dacheux, J. S. McCloy, X. Guo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/92aa8949682b40bbac3d6d8693d80fc1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:92aa8949682b40bbac3d6d8693d80fc1
record_format dspace
spelling oai:doaj.org-article:92aa8949682b40bbac3d6d8693d80fc12021-12-02T16:04:26ZThermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions10.1038/s41529-021-00179-02397-2106https://doaj.org/article/92aa8949682b40bbac3d6d8693d80fc12021-06-01T00:00:00Zhttps://doi.org/10.1038/s41529-021-00179-0https://doaj.org/toc/2397-2106Abstract Non-ideal thermodynamics of solid solutions can greatly impact materials degradation behavior. We have investigated an actinide silicate solid solution system (USiO4–ThSiO4), demonstrating that thermodynamic non-ideality follows a distinctive, atomic-scale disordering process, which is usually considered as a random distribution. Neutron total scattering implemented by pair distribution function analysis confirmed a random distribution model for U and Th in first three coordination shells; however, a machine-learning algorithm suggested heterogeneous U and Th clusters at nanoscale (~2 nm). The local disorder and nanosized heterogeneous is an example of the non-ideality of mixing that has an electronic origin. Partial covalency from the U/Th 5f–O 2p hybridization promotes electron transfer during mixing and leads to local polyhedral distortions. The electronic origin accounts for the strong non-ideality in thermodynamic parameters that extends the stability field of the actinide silicates in nature and under typical nuclear waste repository conditions.J. MarcialY. ZhangX. ZhaoH. XuA. MesbahE. T. NienhuisS. SzenknectJ. C. NeuefeindJ. LinL. QiA. A. MigdisovR. C. EwingN. DacheuxJ. S. McCloyX. GuoNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENnpj Materials Degradation, Vol 5, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
J. Marcial
Y. Zhang
X. Zhao
H. Xu
A. Mesbah
E. T. Nienhuis
S. Szenknect
J. C. Neuefeind
J. Lin
L. Qi
A. A. Migdisov
R. C. Ewing
N. Dacheux
J. S. McCloy
X. Guo
Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
description Abstract Non-ideal thermodynamics of solid solutions can greatly impact materials degradation behavior. We have investigated an actinide silicate solid solution system (USiO4–ThSiO4), demonstrating that thermodynamic non-ideality follows a distinctive, atomic-scale disordering process, which is usually considered as a random distribution. Neutron total scattering implemented by pair distribution function analysis confirmed a random distribution model for U and Th in first three coordination shells; however, a machine-learning algorithm suggested heterogeneous U and Th clusters at nanoscale (~2 nm). The local disorder and nanosized heterogeneous is an example of the non-ideality of mixing that has an electronic origin. Partial covalency from the U/Th 5f–O 2p hybridization promotes electron transfer during mixing and leads to local polyhedral distortions. The electronic origin accounts for the strong non-ideality in thermodynamic parameters that extends the stability field of the actinide silicates in nature and under typical nuclear waste repository conditions.
format article
author J. Marcial
Y. Zhang
X. Zhao
H. Xu
A. Mesbah
E. T. Nienhuis
S. Szenknect
J. C. Neuefeind
J. Lin
L. Qi
A. A. Migdisov
R. C. Ewing
N. Dacheux
J. S. McCloy
X. Guo
author_facet J. Marcial
Y. Zhang
X. Zhao
H. Xu
A. Mesbah
E. T. Nienhuis
S. Szenknect
J. C. Neuefeind
J. Lin
L. Qi
A. A. Migdisov
R. C. Ewing
N. Dacheux
J. S. McCloy
X. Guo
author_sort J. Marcial
title Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
title_short Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
title_full Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
title_fullStr Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
title_full_unstemmed Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
title_sort thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/92aa8949682b40bbac3d6d8693d80fc1
work_keys_str_mv AT jmarcial thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT yzhang thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT xzhao thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT hxu thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT amesbah thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT etnienhuis thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT sszenknect thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT jcneuefeind thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT jlin thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT lqi thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT aamigdisov thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT rcewing thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT ndacheux thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT jsmccloy thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
AT xguo thermodynamicnonidealityanddisorderheterogeneityinactinidesilicatesolidsolutions
_version_ 1718385220363747328