Distance Fibonacci Polynomials by Graph Methods
In this paper we introduce and study a new generalization of Fibonacci polynomials which generalize Fibonacci, Jacobsthal and Narayana numbers, simultaneously. We give a graph interpretation of these polynomials and we obtain a binomial formula for them. Moreover by modification of Pascal’s triangle...
Guardado en:
Autores principales: | Dominik Strzałka, Sławomir Wolski, Andrzej Włoch |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92ae760c477e48868d1b2c7d1cfae792 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the generating matrices of the Ê-Fibonacci numbers
por: Falcon,Sergio
Publicado: (2013) -
A generalization of Fibonacci sequence
por: Kumar Paul,Neeraj, et al.
Publicado: (2020) -
The Proof of a Conjecture on the Density of Sets Related to Divisibility Properties of <i>z</i>(<i>n</i>)
por: Eva Trojovská, et al.
Publicado: (2021) -
Some generalized results related to Fibonacci sequence
por: Paul,Neeraj Kumar, et al.
Publicado: (2021) -
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
por: Čerin,Zvonko
Publicado: (2013)