An experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.

This paper presents an experimental comparison of four different hierarchical self-tuning regulatory control procedures in enhancing the robustness of the under-actuated systems against bounded exogenous disturbances. The proposed hierarchical control procedure augments the ubiquitous Linear-Quadrat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Omer Saleem, Khalid Mahmood-Ul-Hasan, Mohsin Rizwan
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/92afac3c717c4789b8d3c7690fc501e9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:92afac3c717c4789b8d3c7690fc501e9
record_format dspace
spelling oai:doaj.org-article:92afac3c717c4789b8d3c7690fc501e92021-12-02T20:19:22ZAn experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.1932-620310.1371/journal.pone.0256750https://doaj.org/article/92afac3c717c4789b8d3c7690fc501e92021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0256750https://doaj.org/toc/1932-6203This paper presents an experimental comparison of four different hierarchical self-tuning regulatory control procedures in enhancing the robustness of the under-actuated systems against bounded exogenous disturbances. The proposed hierarchical control procedure augments the ubiquitous Linear-Quadratic-Regulator (LQR) with an online reconfiguration block that acts as a superior regulator to dynamically adjust the critical weighting-factors of LQR's quadratic-performance-index (QPI). The Algebraic-Riccati-Equation (ARE) uses these updated weighting-factors to re-compute the optimal control problem, after every sampling interval, to deliver time-varying state-feedback gains. This article experimentally compares four state-of-the-art rule-based online adaptation mechanisms that dynamically restructure the constituent blocks of the ARE. The proposed hierarchical control procedures are synthesized by self-adjusting the (i) controller's degree-of-stability, (ii) the control-weighting-factor of QPI, (iii) the state-weighting-factors of QPI as a function of "state-error-phases", and (iv) the state-weighting-factors of QPI as a function of "state-error-magnitudes". Each adaptation mechanism is formulated via pre-calibrated hyperbolic scaling functions that are driven by state-error-variations. The implications of each mechanism on the controller's behaviour are analyzed in real-time by conducting credible hardware-in-the-loop experiments on the QNET Rotary-Pendulum setup. The rotary pendulum is chosen as the benchmark platform owing to its under-actuated configuration and kinematic instability. The experimental outcomes indicate that the latter self-adaptive controller demonstrates superior adaptability and disturbances-rejection capability throughout the operating regime.Omer SaleemKhalid Mahmood-Ul-HasanMohsin RizwanPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0256750 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Omer Saleem
Khalid Mahmood-Ul-Hasan
Mohsin Rizwan
An experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.
description This paper presents an experimental comparison of four different hierarchical self-tuning regulatory control procedures in enhancing the robustness of the under-actuated systems against bounded exogenous disturbances. The proposed hierarchical control procedure augments the ubiquitous Linear-Quadratic-Regulator (LQR) with an online reconfiguration block that acts as a superior regulator to dynamically adjust the critical weighting-factors of LQR's quadratic-performance-index (QPI). The Algebraic-Riccati-Equation (ARE) uses these updated weighting-factors to re-compute the optimal control problem, after every sampling interval, to deliver time-varying state-feedback gains. This article experimentally compares four state-of-the-art rule-based online adaptation mechanisms that dynamically restructure the constituent blocks of the ARE. The proposed hierarchical control procedures are synthesized by self-adjusting the (i) controller's degree-of-stability, (ii) the control-weighting-factor of QPI, (iii) the state-weighting-factors of QPI as a function of "state-error-phases", and (iv) the state-weighting-factors of QPI as a function of "state-error-magnitudes". Each adaptation mechanism is formulated via pre-calibrated hyperbolic scaling functions that are driven by state-error-variations. The implications of each mechanism on the controller's behaviour are analyzed in real-time by conducting credible hardware-in-the-loop experiments on the QNET Rotary-Pendulum setup. The rotary pendulum is chosen as the benchmark platform owing to its under-actuated configuration and kinematic instability. The experimental outcomes indicate that the latter self-adaptive controller demonstrates superior adaptability and disturbances-rejection capability throughout the operating regime.
format article
author Omer Saleem
Khalid Mahmood-Ul-Hasan
Mohsin Rizwan
author_facet Omer Saleem
Khalid Mahmood-Ul-Hasan
Mohsin Rizwan
author_sort Omer Saleem
title An experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.
title_short An experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.
title_full An experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.
title_fullStr An experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.
title_full_unstemmed An experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.
title_sort experimental comparison of different hierarchical self-tuning regulatory control procedures for under-actuated mechatronic systems.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/92afac3c717c4789b8d3c7690fc501e9
work_keys_str_mv AT omersaleem anexperimentalcomparisonofdifferenthierarchicalselftuningregulatorycontrolproceduresforunderactuatedmechatronicsystems
AT khalidmahmoodulhasan anexperimentalcomparisonofdifferenthierarchicalselftuningregulatorycontrolproceduresforunderactuatedmechatronicsystems
AT mohsinrizwan anexperimentalcomparisonofdifferenthierarchicalselftuningregulatorycontrolproceduresforunderactuatedmechatronicsystems
AT omersaleem experimentalcomparisonofdifferenthierarchicalselftuningregulatorycontrolproceduresforunderactuatedmechatronicsystems
AT khalidmahmoodulhasan experimentalcomparisonofdifferenthierarchicalselftuningregulatorycontrolproceduresforunderactuatedmechatronicsystems
AT mohsinrizwan experimentalcomparisonofdifferenthierarchicalselftuningregulatorycontrolproceduresforunderactuatedmechatronicsystems
_version_ 1718374241288585216