Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress
Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mous...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92b04d4359d04b72a79daef5697143b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:92b04d4359d04b72a79daef5697143b3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:92b04d4359d04b72a79daef5697143b32021-12-02T05:01:50ZDataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress2352-340910.1016/j.dib.2021.107609https://doaj.org/article/92b04d4359d04b72a79daef5697143b32021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2352340921008842https://doaj.org/toc/2352-3409Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mouse model of dystonia. Subsequently, these MEF cultures were treated with either 1 µM Tg or dimethylsulfoxide vehicle (Veh) for six hours. Following treatment, the cells were fractionated into nuclear and cytosolic fractions. Liquid chromatography, tandem mass spectrometry (LC/MS/MS)-based proteomic profiling identified 65,056 unique peptides and 4801 unique proteins across all samples. The data presented here provide subcellular compartment-specific proteomic information within a dystonia model system both basally and under cellular stress. These data can inform future experiments focused on studying the function of TorsinA, the protein encoded by TOR1A, and its potential role in nucleocytoplasmic transport and proteostasis. In addition, the information in this article can also inform future mechanistic studies investigating the relationship between DYT-TOR1A dystonia and the cellular stress response to advance understanding of the pathogenesis of dystonia.Kunal ShroffZachary F. CaffallErik J. SoderblomGreg WaittTricia HoNicole CalakosElsevierarticleDystoniaTorsinAProteomicsSubcellular fractionationThapsigarginStress responseComputer applications to medicine. Medical informaticsR858-859.7Science (General)Q1-390ENData in Brief, Vol 39, Iss , Pp 107609- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Dystonia TorsinA Proteomics Subcellular fractionation Thapsigargin Stress response Computer applications to medicine. Medical informatics R858-859.7 Science (General) Q1-390 |
spellingShingle |
Dystonia TorsinA Proteomics Subcellular fractionation Thapsigargin Stress response Computer applications to medicine. Medical informatics R858-859.7 Science (General) Q1-390 Kunal Shroff Zachary F. Caffall Erik J. Soderblom Greg Waitt Tricia Ho Nicole Calakos Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress |
description |
Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mouse model of dystonia. Subsequently, these MEF cultures were treated with either 1 µM Tg or dimethylsulfoxide vehicle (Veh) for six hours. Following treatment, the cells were fractionated into nuclear and cytosolic fractions. Liquid chromatography, tandem mass spectrometry (LC/MS/MS)-based proteomic profiling identified 65,056 unique peptides and 4801 unique proteins across all samples. The data presented here provide subcellular compartment-specific proteomic information within a dystonia model system both basally and under cellular stress. These data can inform future experiments focused on studying the function of TorsinA, the protein encoded by TOR1A, and its potential role in nucleocytoplasmic transport and proteostasis. In addition, the information in this article can also inform future mechanistic studies investigating the relationship between DYT-TOR1A dystonia and the cellular stress response to advance understanding of the pathogenesis of dystonia. |
format |
article |
author |
Kunal Shroff Zachary F. Caffall Erik J. Soderblom Greg Waitt Tricia Ho Nicole Calakos |
author_facet |
Kunal Shroff Zachary F. Caffall Erik J. Soderblom Greg Waitt Tricia Ho Nicole Calakos |
author_sort |
Kunal Shroff |
title |
Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress |
title_short |
Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress |
title_full |
Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress |
title_fullStr |
Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress |
title_full_unstemmed |
Dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and DYT-TOR1A mouse model of dystonia, basally and during stress |
title_sort |
dataset on the mass spectrometry-based proteomic profiling of mouse embryonic fibroblasts from a wild type and dyt-tor1a mouse model of dystonia, basally and during stress |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/92b04d4359d04b72a79daef5697143b3 |
work_keys_str_mv |
AT kunalshroff datasetonthemassspectrometrybasedproteomicprofilingofmouseembryonicfibroblastsfromawildtypeanddyttor1amousemodelofdystoniabasallyandduringstress AT zacharyfcaffall datasetonthemassspectrometrybasedproteomicprofilingofmouseembryonicfibroblastsfromawildtypeanddyttor1amousemodelofdystoniabasallyandduringstress AT erikjsoderblom datasetonthemassspectrometrybasedproteomicprofilingofmouseembryonicfibroblastsfromawildtypeanddyttor1amousemodelofdystoniabasallyandduringstress AT gregwaitt datasetonthemassspectrometrybasedproteomicprofilingofmouseembryonicfibroblastsfromawildtypeanddyttor1amousemodelofdystoniabasallyandduringstress AT triciaho datasetonthemassspectrometrybasedproteomicprofilingofmouseembryonicfibroblastsfromawildtypeanddyttor1amousemodelofdystoniabasallyandduringstress AT nicolecalakos datasetonthemassspectrometrybasedproteomicprofilingofmouseembryonicfibroblastsfromawildtypeanddyttor1amousemodelofdystoniabasallyandduringstress |
_version_ |
1718400778612244480 |