Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale
Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this reso...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92cbf7103941495ebeaaa05e797e3fcd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:92cbf7103941495ebeaaa05e797e3fcd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:92cbf7103941495ebeaaa05e797e3fcd2021-11-22T11:59:12ZEffects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale2296-646310.3389/feart.2021.695978https://doaj.org/article/92cbf7103941495ebeaaa05e797e3fcd2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/feart.2021.695978/fullhttps://doaj.org/toc/2296-6463Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this resource, hydraulic fracturing operations leave chemically complex fluids in the shale formation for at least two weeks. This provides a substantial opportunity for the hydraulic fracturing fluid (HFF) to react with the shale formation at reservoir temperature and pressure. In this study, we investigated the effects of the carbonates on shale-HFF reactions with a focus on the Marcellus Shale. We performed autoclave experiments at high temperature and pressure reservoir conditions using a carbonate-rich and a decarbonated or carbonate-free version of the same shale sample. We observed that carbonate minerals buffer the pH of the solution, which in turn prevents clay dissolution. Carbonate and bicarbonate ions also scavenge reactive oxidizing species (ROS), which prevents oxidation of shale organic matter and volatile organic compounds (VOCs). Carbonate-free samples also show higher pyrite dissolution compared to the carbonate-rich sample due to chelation reactions. This study demonstrates how carbonate minerals (keeping all other variables constant) affect shale-HFF reactions that can potentially impact porosity, microfracture integrity, and the release of heavy metals and volatile organic contaminants in the produced water.Brennan FergusonVikas AgrawalShikha SharmaJ. Alexandra HakalaWei XiongWei XiongFrontiers Media S.A.articlemarcellus shalehydraulic fracturingcarbonate mineralschemical additiveshydrocarbonsdissolutionScienceQENFrontiers in Earth Science, Vol 9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
marcellus shale hydraulic fracturing carbonate minerals chemical additives hydrocarbons dissolution Science Q |
spellingShingle |
marcellus shale hydraulic fracturing carbonate minerals chemical additives hydrocarbons dissolution Science Q Brennan Ferguson Vikas Agrawal Shikha Sharma J. Alexandra Hakala Wei Xiong Wei Xiong Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale |
description |
Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this resource, hydraulic fracturing operations leave chemically complex fluids in the shale formation for at least two weeks. This provides a substantial opportunity for the hydraulic fracturing fluid (HFF) to react with the shale formation at reservoir temperature and pressure. In this study, we investigated the effects of the carbonates on shale-HFF reactions with a focus on the Marcellus Shale. We performed autoclave experiments at high temperature and pressure reservoir conditions using a carbonate-rich and a decarbonated or carbonate-free version of the same shale sample. We observed that carbonate minerals buffer the pH of the solution, which in turn prevents clay dissolution. Carbonate and bicarbonate ions also scavenge reactive oxidizing species (ROS), which prevents oxidation of shale organic matter and volatile organic compounds (VOCs). Carbonate-free samples also show higher pyrite dissolution compared to the carbonate-rich sample due to chelation reactions. This study demonstrates how carbonate minerals (keeping all other variables constant) affect shale-HFF reactions that can potentially impact porosity, microfracture integrity, and the release of heavy metals and volatile organic contaminants in the produced water. |
format |
article |
author |
Brennan Ferguson Vikas Agrawal Shikha Sharma J. Alexandra Hakala Wei Xiong Wei Xiong |
author_facet |
Brennan Ferguson Vikas Agrawal Shikha Sharma J. Alexandra Hakala Wei Xiong Wei Xiong |
author_sort |
Brennan Ferguson |
title |
Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale |
title_short |
Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale |
title_full |
Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale |
title_fullStr |
Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale |
title_full_unstemmed |
Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale |
title_sort |
effects of carbonate minerals on shale-hydraulic fracturing fluid interactions in the marcellus shale |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/92cbf7103941495ebeaaa05e797e3fcd |
work_keys_str_mv |
AT brennanferguson effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale AT vikasagrawal effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale AT shikhasharma effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale AT jalexandrahakala effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale AT weixiong effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale AT weixiong effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale |
_version_ |
1718417747896958976 |