Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale

Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this reso...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Brennan Ferguson, Vikas Agrawal, Shikha Sharma, J. Alexandra Hakala, Wei Xiong
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/92cbf7103941495ebeaaa05e797e3fcd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:92cbf7103941495ebeaaa05e797e3fcd
record_format dspace
spelling oai:doaj.org-article:92cbf7103941495ebeaaa05e797e3fcd2021-11-22T11:59:12ZEffects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale2296-646310.3389/feart.2021.695978https://doaj.org/article/92cbf7103941495ebeaaa05e797e3fcd2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/feart.2021.695978/fullhttps://doaj.org/toc/2296-6463Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this resource, hydraulic fracturing operations leave chemically complex fluids in the shale formation for at least two weeks. This provides a substantial opportunity for the hydraulic fracturing fluid (HFF) to react with the shale formation at reservoir temperature and pressure. In this study, we investigated the effects of the carbonates on shale-HFF reactions with a focus on the Marcellus Shale. We performed autoclave experiments at high temperature and pressure reservoir conditions using a carbonate-rich and a decarbonated or carbonate-free version of the same shale sample. We observed that carbonate minerals buffer the pH of the solution, which in turn prevents clay dissolution. Carbonate and bicarbonate ions also scavenge reactive oxidizing species (ROS), which prevents oxidation of shale organic matter and volatile organic compounds (VOCs). Carbonate-free samples also show higher pyrite dissolution compared to the carbonate-rich sample due to chelation reactions. This study demonstrates how carbonate minerals (keeping all other variables constant) affect shale-HFF reactions that can potentially impact porosity, microfracture integrity, and the release of heavy metals and volatile organic contaminants in the produced water.Brennan FergusonVikas AgrawalShikha SharmaJ. Alexandra HakalaWei XiongWei XiongFrontiers Media S.A.articlemarcellus shalehydraulic fracturingcarbonate mineralschemical additiveshydrocarbonsdissolutionScienceQENFrontiers in Earth Science, Vol 9 (2021)
institution DOAJ
collection DOAJ
language EN
topic marcellus shale
hydraulic fracturing
carbonate minerals
chemical additives
hydrocarbons
dissolution
Science
Q
spellingShingle marcellus shale
hydraulic fracturing
carbonate minerals
chemical additives
hydrocarbons
dissolution
Science
Q
Brennan Ferguson
Vikas Agrawal
Shikha Sharma
J. Alexandra Hakala
Wei Xiong
Wei Xiong
Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale
description Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this resource, hydraulic fracturing operations leave chemically complex fluids in the shale formation for at least two weeks. This provides a substantial opportunity for the hydraulic fracturing fluid (HFF) to react with the shale formation at reservoir temperature and pressure. In this study, we investigated the effects of the carbonates on shale-HFF reactions with a focus on the Marcellus Shale. We performed autoclave experiments at high temperature and pressure reservoir conditions using a carbonate-rich and a decarbonated or carbonate-free version of the same shale sample. We observed that carbonate minerals buffer the pH of the solution, which in turn prevents clay dissolution. Carbonate and bicarbonate ions also scavenge reactive oxidizing species (ROS), which prevents oxidation of shale organic matter and volatile organic compounds (VOCs). Carbonate-free samples also show higher pyrite dissolution compared to the carbonate-rich sample due to chelation reactions. This study demonstrates how carbonate minerals (keeping all other variables constant) affect shale-HFF reactions that can potentially impact porosity, microfracture integrity, and the release of heavy metals and volatile organic contaminants in the produced water.
format article
author Brennan Ferguson
Vikas Agrawal
Shikha Sharma
J. Alexandra Hakala
Wei Xiong
Wei Xiong
author_facet Brennan Ferguson
Vikas Agrawal
Shikha Sharma
J. Alexandra Hakala
Wei Xiong
Wei Xiong
author_sort Brennan Ferguson
title Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale
title_short Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale
title_full Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale
title_fullStr Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale
title_full_unstemmed Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale
title_sort effects of carbonate minerals on shale-hydraulic fracturing fluid interactions in the marcellus shale
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/92cbf7103941495ebeaaa05e797e3fcd
work_keys_str_mv AT brennanferguson effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale
AT vikasagrawal effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale
AT shikhasharma effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale
AT jalexandrahakala effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale
AT weixiong effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale
AT weixiong effectsofcarbonatemineralsonshalehydraulicfracturingfluidinteractionsinthemarcellusshale
_version_ 1718417747896958976