A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>

A Cayley graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mi mathvariant="sans-serif">Cay</mi><mo>(</mo><mi>G</m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bo Ling, Wanting Li, Bengong Lou
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/92ce701718704f7dac827029d361886d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:92ce701718704f7dac827029d361886d
record_format dspace
spelling oai:doaj.org-article:92ce701718704f7dac827029d361886d2021-11-25T18:17:20ZA 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>10.3390/math92229352227-7390https://doaj.org/article/92ce701718704f7dac827029d361886d2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2935https://doaj.org/toc/2227-7390A Cayley graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mi mathvariant="sans-serif">Cay</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is said to be normal if the base group <i>G</i> is normal in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Aut</mi><mo>Γ</mo></mrow></semantics></math></inline-formula>. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>119</mn></msub></semantics></math></inline-formula>. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>120</mn></msub></semantics></math></inline-formula>.Bo LingWanting LiBengong LouMDPI AGarticlesimple groupnonnormal Cayley grapharc-transitive graphautomorphism groupMathematicsQA1-939ENMathematics, Vol 9, Iss 2935, p 2935 (2021)
institution DOAJ
collection DOAJ
language EN
topic simple group
nonnormal Cayley graph
arc-transitive graph
automorphism group
Mathematics
QA1-939
spellingShingle simple group
nonnormal Cayley graph
arc-transitive graph
automorphism group
Mathematics
QA1-939
Bo Ling
Wanting Li
Bengong Lou
A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>
description A Cayley graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mi mathvariant="sans-serif">Cay</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is said to be normal if the base group <i>G</i> is normal in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Aut</mi><mo>Γ</mo></mrow></semantics></math></inline-formula>. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>119</mn></msub></semantics></math></inline-formula>. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>120</mn></msub></semantics></math></inline-formula>.
format article
author Bo Ling
Wanting Li
Bengong Lou
author_facet Bo Ling
Wanting Li
Bengong Lou
author_sort Bo Ling
title A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>
title_short A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>
title_full A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>
title_fullStr A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>
title_full_unstemmed A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>
title_sort 2-arc transitive hexavalent nonnormal cayley graph on a<sub>119</sub>
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/92ce701718704f7dac827029d361886d
work_keys_str_mv AT boling a2arctransitivehexavalentnonnormalcayleygraphonasub119sub
AT wantingli a2arctransitivehexavalentnonnormalcayleygraphonasub119sub
AT bengonglou a2arctransitivehexavalentnonnormalcayleygraphonasub119sub
AT boling 2arctransitivehexavalentnonnormalcayleygraphonasub119sub
AT wantingli 2arctransitivehexavalentnonnormalcayleygraphonasub119sub
AT bengonglou 2arctransitivehexavalentnonnormalcayleygraphonasub119sub
_version_ 1718411396130013184