A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>
A Cayley graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mi mathvariant="sans-serif">Cay</mi><mo>(</mo><mi>G</m...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92ce701718704f7dac827029d361886d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:92ce701718704f7dac827029d361886d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:92ce701718704f7dac827029d361886d2021-11-25T18:17:20ZA 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub>10.3390/math92229352227-7390https://doaj.org/article/92ce701718704f7dac827029d361886d2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2935https://doaj.org/toc/2227-7390A Cayley graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mi mathvariant="sans-serif">Cay</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is said to be normal if the base group <i>G</i> is normal in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Aut</mi><mo>Γ</mo></mrow></semantics></math></inline-formula>. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>119</mn></msub></semantics></math></inline-formula>. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>120</mn></msub></semantics></math></inline-formula>.Bo LingWanting LiBengong LouMDPI AGarticlesimple groupnonnormal Cayley grapharc-transitive graphautomorphism groupMathematicsQA1-939ENMathematics, Vol 9, Iss 2935, p 2935 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
simple group nonnormal Cayley graph arc-transitive graph automorphism group Mathematics QA1-939 |
spellingShingle |
simple group nonnormal Cayley graph arc-transitive graph automorphism group Mathematics QA1-939 Bo Ling Wanting Li Bengong Lou A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub> |
description |
A Cayley graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mi mathvariant="sans-serif">Cay</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is said to be normal if the base group <i>G</i> is normal in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Aut</mi><mo>Γ</mo></mrow></semantics></math></inline-formula>. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>119</mn></msub></semantics></math></inline-formula>. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">A</mi><mn>120</mn></msub></semantics></math></inline-formula>. |
format |
article |
author |
Bo Ling Wanting Li Bengong Lou |
author_facet |
Bo Ling Wanting Li Bengong Lou |
author_sort |
Bo Ling |
title |
A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub> |
title_short |
A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub> |
title_full |
A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub> |
title_fullStr |
A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub> |
title_full_unstemmed |
A 2-arc Transitive Hexavalent Nonnormal Cayley Graph on A<sub>119</sub> |
title_sort |
2-arc transitive hexavalent nonnormal cayley graph on a<sub>119</sub> |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/92ce701718704f7dac827029d361886d |
work_keys_str_mv |
AT boling a2arctransitivehexavalentnonnormalcayleygraphonasub119sub AT wantingli a2arctransitivehexavalentnonnormalcayleygraphonasub119sub AT bengonglou a2arctransitivehexavalentnonnormalcayleygraphonasub119sub AT boling 2arctransitivehexavalentnonnormalcayleygraphonasub119sub AT wantingli 2arctransitivehexavalentnonnormalcayleygraphonasub119sub AT bengonglou 2arctransitivehexavalentnonnormalcayleygraphonasub119sub |
_version_ |
1718411396130013184 |