Evaluation of dose-volume histogram prediction for organ-at risk and planning target volume based on machine learning
Abstract The purpose of this work is to evaluate the performance of applying patient dosimetric information induced by individual uniform-intensity radiation fields in organ-at risk (OAR) dose-volume histogram (DVH) prediction, and extend to DVH prediction of planning target volume (PTV). Ninety nas...
Guardado en:
Autores principales: | Sheng xiu Jiao, Ming li Wang, Li xin Chen, Xiao-wei Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92e4c017da9a40e6b823fcd287e42a91 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification
por: Byunghyun Baek, et al.
Publicado: (2021) -
Associated factors of white matter hyperintensity volume: a machine-learning approach
por: Sergio Grosu, et al.
Publicado: (2021) -
Organic Optoelectronic Materials (Volume II)
por: Nguyen-Hung Tran, et al.
Publicado: (2021) -
Morphology and Volume of Maxillary Canine Pulp Cavity for Individual Age Estimation in Forensic Dentistry
por: Li,Bing, et al.
Publicado: (2017) -
Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
por: Wei Wang, et al.
Publicado: (2021)