Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience

Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Javier Andreu-Perez, Lauren L. Emberson, Mehrin Kiani, Maria Laura Filippetti, Hani Hagras, Silvia Rigato
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/92e7311fbe7145d8a12d8903b24cf3ed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided insight into patterns of cortical networks.