Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided in...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92e7311fbe7145d8a12d8903b24cf3ed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:92e7311fbe7145d8a12d8903b24cf3ed |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:92e7311fbe7145d8a12d8903b24cf3ed2021-12-02T18:34:00ZExplainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience10.1038/s42003-021-02534-y2399-3642https://doaj.org/article/92e7311fbe7145d8a12d8903b24cf3ed2021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02534-yhttps://doaj.org/toc/2399-3642Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided insight into patterns of cortical networks.Javier Andreu-PerezLauren L. EmbersonMehrin KianiMaria Laura FilippettiHani HagrasSilvia RigatoNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Javier Andreu-Perez Lauren L. Emberson Mehrin Kiani Maria Laura Filippetti Hani Hagras Silvia Rigato Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience |
description |
Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided insight into patterns of cortical networks. |
format |
article |
author |
Javier Andreu-Perez Lauren L. Emberson Mehrin Kiani Maria Laura Filippetti Hani Hagras Silvia Rigato |
author_facet |
Javier Andreu-Perez Lauren L. Emberson Mehrin Kiani Maria Laura Filippetti Hani Hagras Silvia Rigato |
author_sort |
Javier Andreu-Perez |
title |
Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience |
title_short |
Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience |
title_full |
Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience |
title_fullStr |
Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience |
title_full_unstemmed |
Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience |
title_sort |
explainable artificial intelligence based analysis for interpreting infant fnirs data in developmental cognitive neuroscience |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/92e7311fbe7145d8a12d8903b24cf3ed |
work_keys_str_mv |
AT javierandreuperez explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience AT laurenlemberson explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience AT mehrinkiani explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience AT marialaurafilippetti explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience AT hanihagras explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience AT silviarigato explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience |
_version_ |
1718377933587873792 |