Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience

Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Javier Andreu-Perez, Lauren L. Emberson, Mehrin Kiani, Maria Laura Filippetti, Hani Hagras, Silvia Rigato
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/92e7311fbe7145d8a12d8903b24cf3ed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:92e7311fbe7145d8a12d8903b24cf3ed
record_format dspace
spelling oai:doaj.org-article:92e7311fbe7145d8a12d8903b24cf3ed2021-12-02T18:34:00ZExplainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience10.1038/s42003-021-02534-y2399-3642https://doaj.org/article/92e7311fbe7145d8a12d8903b24cf3ed2021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02534-yhttps://doaj.org/toc/2399-3642Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided insight into patterns of cortical networks.Javier Andreu-PerezLauren L. EmbersonMehrin KianiMaria Laura FilippettiHani HagrasSilvia RigatoNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Javier Andreu-Perez
Lauren L. Emberson
Mehrin Kiani
Maria Laura Filippetti
Hani Hagras
Silvia Rigato
Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
description Andreu-Perez et al developed a multivariate pattern analysis for fNIRS data (xMVPA), which is powered by eXplainable Artificial Intelligence (XAI). They demonstrated its application in the context of investigating visual and auditory processing in six-month-old infants and showed that it provided insight into patterns of cortical networks.
format article
author Javier Andreu-Perez
Lauren L. Emberson
Mehrin Kiani
Maria Laura Filippetti
Hani Hagras
Silvia Rigato
author_facet Javier Andreu-Perez
Lauren L. Emberson
Mehrin Kiani
Maria Laura Filippetti
Hani Hagras
Silvia Rigato
author_sort Javier Andreu-Perez
title Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
title_short Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
title_full Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
title_fullStr Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
title_full_unstemmed Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience
title_sort explainable artificial intelligence based analysis for interpreting infant fnirs data in developmental cognitive neuroscience
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/92e7311fbe7145d8a12d8903b24cf3ed
work_keys_str_mv AT javierandreuperez explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience
AT laurenlemberson explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience
AT mehrinkiani explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience
AT marialaurafilippetti explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience
AT hanihagras explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience
AT silviarigato explainableartificialintelligencebasedanalysisforinterpretinginfantfnirsdataindevelopmentalcognitiveneuroscience
_version_ 1718377933587873792