Automated detection of poor-quality data: case studies in healthcare
Abstract The detection and removal of poor-quality data in a training set is crucial to achieve high-performing AI models. In healthcare, data can be inherently poor-quality due to uncertainty or subjectivity, but as is often the case, the requirement for data privacy restricts AI practitioners from...
Guardado en:
Autores principales: | M. A. Dakka, T. V. Nguyen, J. M. M. Hall, S. M. Diakiw, M. VerMilyea, R. Linke, M. Perugini, D. Perugini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/92ef4fc958d544dcababaa3db903e24e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalization of clustering coefficients to signed correlation networks.
por: Giulio Costantini, et al.
Publicado: (2014) -
Concept and design of automated moving device for healthcare equipment
por: Faria N.M.S., et al.
Publicado: (2021) -
Psychometric properties of the embodiment scale for the rubber hand illusion and its relation with individual differences
por: Daniele Romano, et al.
Publicado: (2021) -
An automated retrospective VAE-surveillance tool for future quality improvement studies
por: Oliver Wolffers, et al.
Publicado: (2021) -
A Meal Replacement Program for the Treatment of Obesity: A Cost-Effectiveness Analysis from the Swiss Payer’s Perspective
por: Nuijten M, et al.
Publicado: (2021)