Automated detection of poor-quality data: case studies in healthcare

Abstract The detection and removal of poor-quality data in a training set is crucial to achieve high-performing AI models. In healthcare, data can be inherently poor-quality due to uncertainty or subjectivity, but as is often the case, the requirement for data privacy restricts AI practitioners from...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. A. Dakka, T. V. Nguyen, J. M. M. Hall, S. M. Diakiw, M. VerMilyea, R. Linke, M. Perugini, D. Perugini
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/92ef4fc958d544dcababaa3db903e24e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares