SCALE method for single-cell ATAC-seq analysis via latent feature extraction

Single-cell ATAC-seq data is challenging to analyse for reasons such as high dimensionality and sparsity. Here, the authors develop SCALE, a deep learning method that leverages latent feature extraction for various tasks of scATACseq data analysis.

Guardado en:
Detalles Bibliográficos
Autores principales: Lei Xiong, Kui Xu, Kang Tian, Yanqiu Shao, Lei Tang, Ge Gao, Michael Zhang, Tao Jiang, Qiangfeng Cliff Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/9307133826f6483aacbf4da911ec0cc4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single-cell ATAC-seq data is challenging to analyse for reasons such as high dimensionality and sparsity. Here, the authors develop SCALE, a deep learning method that leverages latent feature extraction for various tasks of scATACseq data analysis.