SCALE method for single-cell ATAC-seq analysis via latent feature extraction
Single-cell ATAC-seq data is challenging to analyse for reasons such as high dimensionality and sparsity. Here, the authors develop SCALE, a deep learning method that leverages latent feature extraction for various tasks of scATACseq data analysis.
Guardado en:
Autores principales: | Lei Xiong, Kui Xu, Kang Tian, Yanqiu Shao, Lei Tang, Ge Gao, Michael Zhang, Tao Jiang, Qiangfeng Cliff Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9307133826f6483aacbf4da911ec0cc4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comprehensive analysis of single cell ATAC-seq data with SnapATAC
por: Rongxin Fang, et al.
Publicado: (2021) -
Reducing mitochondrial reads in ATAC-seq using CRISPR/Cas9
por: Lindsey Montefiori, et al.
Publicado: (2017) -
Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Peripheral Mononuclear Cells in Patients With Ankylosing Spondylitis
por: Huixuan Xu, et al.
Publicado: (2021) -
Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement
por: Guangshuai Jia, et al.
Publicado: (2018) -
Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
por: Zhijian Li, et al.
Publicado: (2021)