Locally conformally Kähler solvmanifolds: a survey

A Hermitian structure on a manifold is called locally conformally Kähler (LCK) if it locally admits a conformal change which is Kähler. In this survey we review recent results of invariant LCK structures on solvmanifolds and present original results regarding the canonical bundle of solvmanifolds eq...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrada A., Origlia M.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/9309c40cb3054cba94b7af84b59d4481
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9309c40cb3054cba94b7af84b59d4481
record_format dspace
spelling oai:doaj.org-article:9309c40cb3054cba94b7af84b59d44812021-12-02T16:36:59ZLocally conformally Kähler solvmanifolds: a survey2300-744310.1515/coma-2019-0003https://doaj.org/article/9309c40cb3054cba94b7af84b59d44812019-02-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0003https://doaj.org/toc/2300-7443A Hermitian structure on a manifold is called locally conformally Kähler (LCK) if it locally admits a conformal change which is Kähler. In this survey we review recent results of invariant LCK structures on solvmanifolds and present original results regarding the canonical bundle of solvmanifolds equipped with a Vaisman structure, that is, a LCK structure whose associated Lee form is parallel.Andrada A.Origlia M.De Gruyterarticlelocally conformally kähler manifoldsolvable lie groupsolvmanifold53b3553a3022e25MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 65-87 (2019)
institution DOAJ
collection DOAJ
language EN
topic locally conformally kähler manifold
solvable lie group
solvmanifold
53b35
53a30
22e25
Mathematics
QA1-939
spellingShingle locally conformally kähler manifold
solvable lie group
solvmanifold
53b35
53a30
22e25
Mathematics
QA1-939
Andrada A.
Origlia M.
Locally conformally Kähler solvmanifolds: a survey
description A Hermitian structure on a manifold is called locally conformally Kähler (LCK) if it locally admits a conformal change which is Kähler. In this survey we review recent results of invariant LCK structures on solvmanifolds and present original results regarding the canonical bundle of solvmanifolds equipped with a Vaisman structure, that is, a LCK structure whose associated Lee form is parallel.
format article
author Andrada A.
Origlia M.
author_facet Andrada A.
Origlia M.
author_sort Andrada A.
title Locally conformally Kähler solvmanifolds: a survey
title_short Locally conformally Kähler solvmanifolds: a survey
title_full Locally conformally Kähler solvmanifolds: a survey
title_fullStr Locally conformally Kähler solvmanifolds: a survey
title_full_unstemmed Locally conformally Kähler solvmanifolds: a survey
title_sort locally conformally kähler solvmanifolds: a survey
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/9309c40cb3054cba94b7af84b59d4481
work_keys_str_mv AT andradaa locallyconformallykahlersolvmanifoldsasurvey
AT origliam locallyconformallykahlersolvmanifoldsasurvey
_version_ 1718383645464461312