Locally conformally Kähler solvmanifolds: a survey
A Hermitian structure on a manifold is called locally conformally Kähler (LCK) if it locally admits a conformal change which is Kähler. In this survey we review recent results of invariant LCK structures on solvmanifolds and present original results regarding the canonical bundle of solvmanifolds eq...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9309c40cb3054cba94b7af84b59d4481 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9309c40cb3054cba94b7af84b59d4481 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9309c40cb3054cba94b7af84b59d44812021-12-02T16:36:59ZLocally conformally Kähler solvmanifolds: a survey2300-744310.1515/coma-2019-0003https://doaj.org/article/9309c40cb3054cba94b7af84b59d44812019-02-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0003https://doaj.org/toc/2300-7443A Hermitian structure on a manifold is called locally conformally Kähler (LCK) if it locally admits a conformal change which is Kähler. In this survey we review recent results of invariant LCK structures on solvmanifolds and present original results regarding the canonical bundle of solvmanifolds equipped with a Vaisman structure, that is, a LCK structure whose associated Lee form is parallel.Andrada A.Origlia M.De Gruyterarticlelocally conformally kähler manifoldsolvable lie groupsolvmanifold53b3553a3022e25MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 65-87 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
locally conformally kähler manifold solvable lie group solvmanifold 53b35 53a30 22e25 Mathematics QA1-939 |
spellingShingle |
locally conformally kähler manifold solvable lie group solvmanifold 53b35 53a30 22e25 Mathematics QA1-939 Andrada A. Origlia M. Locally conformally Kähler solvmanifolds: a survey |
description |
A Hermitian structure on a manifold is called locally conformally Kähler (LCK) if it locally admits a conformal change which is Kähler. In this survey we review recent results of invariant LCK structures on solvmanifolds and present original results regarding the canonical bundle of solvmanifolds equipped with a Vaisman structure, that is, a LCK structure whose associated Lee form is parallel. |
format |
article |
author |
Andrada A. Origlia M. |
author_facet |
Andrada A. Origlia M. |
author_sort |
Andrada A. |
title |
Locally conformally Kähler solvmanifolds: a survey |
title_short |
Locally conformally Kähler solvmanifolds: a survey |
title_full |
Locally conformally Kähler solvmanifolds: a survey |
title_fullStr |
Locally conformally Kähler solvmanifolds: a survey |
title_full_unstemmed |
Locally conformally Kähler solvmanifolds: a survey |
title_sort |
locally conformally kähler solvmanifolds: a survey |
publisher |
De Gruyter |
publishDate |
2019 |
url |
https://doaj.org/article/9309c40cb3054cba94b7af84b59d4481 |
work_keys_str_mv |
AT andradaa locallyconformallykahlersolvmanifoldsasurvey AT origliam locallyconformallykahlersolvmanifoldsasurvey |
_version_ |
1718383645464461312 |