Comparing quantile regression methods for probabilistic forecasting of NO2 pollution levels
Abstract High concentration episodes for NO2 are increasingly dealt with by authorities through traffic restrictions which are activated when air quality deteriorates beyond certain thresholds. Foreseeing the probability that pollutant concentrations reach those thresholds becomes thus a necessity....
Enregistré dans:
Auteurs principaux: | Sebastien Pérez Vasseur, José L. Aznarte |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9334a8d6092643f6a2ce0bf4cee80d06 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The comparison of censored quantile regression methods in prognosis factors of breast cancer survival
par: Akram Yazdani, et autres
Publié: (2021) -
Do Diversified Export, Agriculture, and Cleaner Energy Consumption Induce Atmospheric Pollution in Asia? Application of Method of Moments Quantile Regression
par: Mubeen Abdur Rehman, et autres
Publié: (2021) -
THE DISTRIBUTIVE EFFECTS OF EDUCATION: AN UNCONDITIONAL QUANTILE REGRESSION APPROACH
par: ALEJO,JAVIER, et autres
Publié: (2014) -
Earning inequalities in Brazil: quantile regressions and the decomposition approach
par: Monsueto, Sandro Eduardo, et autres
Publié: (2014) -
Reference Values for Serum Lipid Profiles in Iranian Adults: A Spline-Based Quantile Regression Method
par: Hossein Fallahzadeh, et autres
Publié: (2021)