Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems

We consider quasilinear elliptic systems in divergence form. In general, we cannot expect that weak solutions are locally bounded because of De Giorgi’s counterexample. Here we assume that off-diagonal coefficients have a “butterfly support”: this allows us to prove local boundedness of weak solutio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Leonardi Salvatore, Leonetti Francesco, Rocha Eugenio, Staicu Vasile
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/9337ef6d8c9549ecb292083ac007b37f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9337ef6d8c9549ecb292083ac007b37f
record_format dspace
spelling oai:doaj.org-article:9337ef6d8c9549ecb292083ac007b37f2021-12-05T14:10:40ZButterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems2191-94962191-950X10.1515/anona-2021-0205https://doaj.org/article/9337ef6d8c9549ecb292083ac007b37f2021-11-01T00:00:00Zhttps://doi.org/10.1515/anona-2021-0205https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XWe consider quasilinear elliptic systems in divergence form. In general, we cannot expect that weak solutions are locally bounded because of De Giorgi’s counterexample. Here we assume that off-diagonal coefficients have a “butterfly support”: this allows us to prove local boundedness of weak solutions.Leonardi SalvatoreLeonetti FrancescoRocha EugenioStaicu VasileDe Gruyterarticlequasilinearellipticsystemweaksolutionregularityprimary: 35j47secondary: 35b6549n60AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 672-683 (2021)
institution DOAJ
collection DOAJ
language EN
topic quasilinear
elliptic
system
weak
solution
regularity
primary: 35j47
secondary: 35b65
49n60
Analysis
QA299.6-433
spellingShingle quasilinear
elliptic
system
weak
solution
regularity
primary: 35j47
secondary: 35b65
49n60
Analysis
QA299.6-433
Leonardi Salvatore
Leonetti Francesco
Rocha Eugenio
Staicu Vasile
Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
description We consider quasilinear elliptic systems in divergence form. In general, we cannot expect that weak solutions are locally bounded because of De Giorgi’s counterexample. Here we assume that off-diagonal coefficients have a “butterfly support”: this allows us to prove local boundedness of weak solutions.
format article
author Leonardi Salvatore
Leonetti Francesco
Rocha Eugenio
Staicu Vasile
author_facet Leonardi Salvatore
Leonetti Francesco
Rocha Eugenio
Staicu Vasile
author_sort Leonardi Salvatore
title Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
title_short Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
title_full Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
title_fullStr Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
title_full_unstemmed Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
title_sort butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/9337ef6d8c9549ecb292083ac007b37f
work_keys_str_mv AT leonardisalvatore butterflysupportforoffdiagonalcoefficientsandboundednessofsolutionstoquasilinearellipticsystems
AT leonettifrancesco butterflysupportforoffdiagonalcoefficientsandboundednessofsolutionstoquasilinearellipticsystems
AT rochaeugenio butterflysupportforoffdiagonalcoefficientsandboundednessofsolutionstoquasilinearellipticsystems
AT staicuvasile butterflysupportforoffdiagonalcoefficientsandboundednessofsolutionstoquasilinearellipticsystems
_version_ 1718371851506286592