Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material
Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.
Guardado en:
Autores principales: | Teodor K. Todorov, Saurabh Singh, Douglas M. Bishop, Oki Gunawan, Yun Seog Lee, Talia S. Gershon, Kevin W. Brew, Priscilla D. Antunez, Richard Haight |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9343b1c7f0884559a79aac2c37e2e4a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ultrathin polymeric films for interfacial passivation in wide band-gap perovskite solar cells
por: Parnian Ferdowsi, et al.
Publicado: (2020) -
A study of the band gap of sensitized titanium dioxide nanoparticles and their photovoltaic applications
por: Ozuomba, J., et al.
Publicado: (2013) -
Band Gap Engineering of Multi-Junction Solar Cells: Effects of Series Resistances and Solar Concentration
por: Joya Zeitouny, et al.
Publicado: (2017) -
Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells
por: Wanchun Xiang, et al.
Publicado: (2019) -
The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
por: Jay Shah, et al.
Publicado: (2018)