Relative Gorenstein Dimensions over Triangular Matrix Rings

Let <i>A</i> and <i>B</i> be rings, <i>U</i> a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>B</mi><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Driss Bennis, Rachid El Maaouy, Juan Ramón García Rozas, Luis Oyonarte
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/93474e7f450d4fe8815f85062b920e59
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:93474e7f450d4fe8815f85062b920e59
record_format dspace
spelling oai:doaj.org-article:93474e7f450d4fe8815f85062b920e592021-11-11T18:14:38ZRelative Gorenstein Dimensions over Triangular Matrix Rings10.3390/math92126762227-7390https://doaj.org/article/93474e7f450d4fe8815f85062b920e592021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2676https://doaj.org/toc/2227-7390Let <i>A</i> and <i>B</i> be rings, <i>U</i> a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-bimodule, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>=</mo><mfenced open="(" close=")"><mtable><mtr><mtd><mi>A</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>U</mi></mtd><mtd><mi>B</mi></mtd></mtr></mtable></mfenced></mrow></semantics></math></inline-formula> the triangular matrix ring. In this paper, several notions in relative Gorenstein algebra over a triangular matrix ring are investigated. We first study how to construct w-tilting (tilting, semidualizing) over <i>T</i> using the corresponding ones over <i>A</i> and <i>B</i>. We show that when <i>U</i> is relative (weakly) compatible, we are able to describe the structure of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mi>C</mi></msub></semantics></math></inline-formula>-projective modules over <i>T</i>. As an application, we study when a morphism in <i>T</i>-Mod is a special <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mi>C</mi></msub><mi>P</mi><mrow><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>-precover and when the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mi>C</mi></msub><mi>P</mi><mrow><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> is a special precovering class. In addition, we study the relative global dimension of <i>T</i>. In some cases, we show that it can be computed from the relative global dimensions of <i>A</i> and <i>B</i>. We end the paper with a counterexample to a result that characterizes when a <i>T</i>-module has a finite projective dimension.Driss BennisRachid El MaaouyJuan Ramón García RozasLuis OyonarteMDPI AGarticletriangular matrix ringweakly Wakamatsu tilting modulesrelative Gorenstein dimensionsMathematicsQA1-939ENMathematics, Vol 9, Iss 2676, p 2676 (2021)
institution DOAJ
collection DOAJ
language EN
topic triangular matrix ring
weakly Wakamatsu tilting modules
relative Gorenstein dimensions
Mathematics
QA1-939
spellingShingle triangular matrix ring
weakly Wakamatsu tilting modules
relative Gorenstein dimensions
Mathematics
QA1-939
Driss Bennis
Rachid El Maaouy
Juan Ramón García Rozas
Luis Oyonarte
Relative Gorenstein Dimensions over Triangular Matrix Rings
description Let <i>A</i> and <i>B</i> be rings, <i>U</i> a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-bimodule, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>=</mo><mfenced open="(" close=")"><mtable><mtr><mtd><mi>A</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>U</mi></mtd><mtd><mi>B</mi></mtd></mtr></mtable></mfenced></mrow></semantics></math></inline-formula> the triangular matrix ring. In this paper, several notions in relative Gorenstein algebra over a triangular matrix ring are investigated. We first study how to construct w-tilting (tilting, semidualizing) over <i>T</i> using the corresponding ones over <i>A</i> and <i>B</i>. We show that when <i>U</i> is relative (weakly) compatible, we are able to describe the structure of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mi>C</mi></msub></semantics></math></inline-formula>-projective modules over <i>T</i>. As an application, we study when a morphism in <i>T</i>-Mod is a special <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mi>C</mi></msub><mi>P</mi><mrow><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>-precover and when the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mi>C</mi></msub><mi>P</mi><mrow><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> is a special precovering class. In addition, we study the relative global dimension of <i>T</i>. In some cases, we show that it can be computed from the relative global dimensions of <i>A</i> and <i>B</i>. We end the paper with a counterexample to a result that characterizes when a <i>T</i>-module has a finite projective dimension.
format article
author Driss Bennis
Rachid El Maaouy
Juan Ramón García Rozas
Luis Oyonarte
author_facet Driss Bennis
Rachid El Maaouy
Juan Ramón García Rozas
Luis Oyonarte
author_sort Driss Bennis
title Relative Gorenstein Dimensions over Triangular Matrix Rings
title_short Relative Gorenstein Dimensions over Triangular Matrix Rings
title_full Relative Gorenstein Dimensions over Triangular Matrix Rings
title_fullStr Relative Gorenstein Dimensions over Triangular Matrix Rings
title_full_unstemmed Relative Gorenstein Dimensions over Triangular Matrix Rings
title_sort relative gorenstein dimensions over triangular matrix rings
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/93474e7f450d4fe8815f85062b920e59
work_keys_str_mv AT drissbennis relativegorensteindimensionsovertriangularmatrixrings
AT rachidelmaaouy relativegorensteindimensionsovertriangularmatrixrings
AT juanramongarciarozas relativegorensteindimensionsovertriangularmatrixrings
AT luisoyonarte relativegorensteindimensionsovertriangularmatrixrings
_version_ 1718431899332902912