Decimated little brown bats show potential for adaptive change
Abstract The degree to which species can rapidly adapt is key to survival in the face of climatic and other anthropogenic changes. For little brown bats (Myotis lucifugus), whose populations have experienced declines of over 90% because of the introduced fungal pathogen that causes white-nose syndro...
Saved in:
Main Authors: | Giorgia G. Auteri, L. Lacey Knowles |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2020
|
Subjects: | |
Online Access: | https://doaj.org/article/934b9f27f4894c98a56c179c410ebe8e |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at early stages of white-nose syndrome
by: Evan L. Pannkuk, et al.
Published: (2021) -
Avian and human influenza virus compatible sialic acid receptors in little brown bats
by: Shubhada K. Chothe, et al.
Published: (2017) -
Hibernating little brown myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome.
by: Marianne S Moore, et al.
Published: (2013) -
Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus)
by: Tonie E. Rocke, et al.
Published: (2019) -
Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice
by: Yuko Okamatsu-Ogura, et al.
Published: (2017)