Deep learning can accelerate and quantify simulated localized correlated spectroscopy
Abstract Nuclear magnetic resonance spectroscopy (MRS) allows for the determination of atomic structures and concentrations of different chemicals in a biochemical sample of interest. MRS is used in vivo clinically to aid in the diagnosis of several pathologies that affect metabolic pathways in the...
Enregistré dans:
Auteurs principaux: | Zohaib Iqbal, Dan Nguyen, Michael Albert Thomas, Steve Jiang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/934dd7114c014eccb332bbe5d449288b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Storage Period Discrimination of Bolete Mushrooms Based on Deep Learning Methods Combined With Two-Dimensional Correlation Spectroscopy and Integrative Two-Dimensional Correlation Spectroscopy
par: Jian-E Dong, et autres
Publié: (2021) -
Prior-knowledge Fitting of Accelerated Five-dimensional Echo Planar J-resolved Spectroscopic Imaging: Effect of Nonlinear Reconstruction on Quantitation
par: Zohaib Iqbal, et autres
Publié: (2017) -
Review on FPGA-Based Accelerators in Deep Learning
par: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publié: (2021) -
Uncertainty quantification for deep learning in particle accelerator applications
par: Aashwin Ananda Mishra, et autres
Publié: (2021) -
An alternative framework for fluorescence correlation spectroscopy
par: Sina Jazani, et autres
Publié: (2019)