Deep learning can accelerate and quantify simulated localized correlated spectroscopy
Abstract Nuclear magnetic resonance spectroscopy (MRS) allows for the determination of atomic structures and concentrations of different chemicals in a biochemical sample of interest. MRS is used in vivo clinically to aid in the diagnosis of several pathologies that affect metabolic pathways in the...
Guardado en:
Autores principales: | Zohaib Iqbal, Dan Nguyen, Michael Albert Thomas, Steve Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/934dd7114c014eccb332bbe5d449288b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Storage Period Discrimination of Bolete Mushrooms Based on Deep Learning Methods Combined With Two-Dimensional Correlation Spectroscopy and Integrative Two-Dimensional Correlation Spectroscopy
por: Jian-E Dong, et al.
Publicado: (2021) -
Prior-knowledge Fitting of Accelerated Five-dimensional Echo Planar J-resolved Spectroscopic Imaging: Effect of Nonlinear Reconstruction on Quantitation
por: Zohaib Iqbal, et al.
Publicado: (2017) -
Review on FPGA-Based Accelerators in Deep Learning
por: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publicado: (2021) -
Uncertainty quantification for deep learning in particle accelerator applications
por: Aashwin Ananda Mishra, et al.
Publicado: (2021) -
An alternative framework for fluorescence correlation spectroscopy
por: Sina Jazani, et al.
Publicado: (2019)