A Comparison of Static and Dynamic Functional Connectivities for Identifying Subjects and Biological Sex Using Intrinsic Individual Brain Connectivity

Abstract Functional magnetic resonance imaging has revealed correlated activities in brain regions even in the absence of a task. Initial studies assumed this resting-state functional connectivity (FC) to be stationary in nature, but recent studies have modeled these activities as a dynamic network....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sreevalsan S. Menon, K. Krishnamurthy
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/934df9ecbb914d8ca5ef680f818bbe61
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Functional magnetic resonance imaging has revealed correlated activities in brain regions even in the absence of a task. Initial studies assumed this resting-state functional connectivity (FC) to be stationary in nature, but recent studies have modeled these activities as a dynamic network. Dynamic spatiotemporal models better model the brain activities, but are computationally more involved. A comparison of static and dynamic FCs was made to quantitatively study their efficacies in identifying intrinsic individual connectivity patterns using data from the Human Connectome Project. Results show that the intrinsic individual brain connectivity pattern can be used as a ‘fingerprint’ to distinguish among and identify subjects and is more accurately captured with partial correlation and assuming static FC. It was also seen that the intrinsic individual brain connectivity patterns were invariant over a few months. Additionally, biological sex identification was successfully performed using the intrinsic individual connectivity patterns, and group averages of male and female FC matrices. Edge consistency, edge variability and differential power measures were used to identify the major resting-state networks involved in identifying subjects and their sex.