Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
Abstract During the perioperative period patients often suffer complications, including acute kidney injury (AKI), reintubation, and mortality. In order to effectively prevent these complications, high-risk patients must be readily identified. However, most current risk scores are designed to predic...
Enregistré dans:
Auteurs principaux: | Ira S. Hofer, Christine Lee, Eilon Gabel, Pierre Baldi, Maxime Cannesson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9361958a0ed84b9b8b3995be232455af |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality
par: Christine K. Lee, et autres
Publié: (2021) -
A simulation-based evaluation of machine learning models for clinical decision support: application and analysis using hospital readmission
par: Velibor V. Mišić, et autres
Publié: (2021) -
Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs)
par: Jennifer C. Goldsack, et autres
Publié: (2020) -
Predicting COVID-19 mortality with electronic medical records
par: Hossein Estiri, et autres
Publié: (2021) -
Evaluation framework to guide implementation of AI systems into healthcare settings
par: Enrico Coiera, et autres
Publié: (2021)