Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
Abstract During the perioperative period patients often suffer complications, including acute kidney injury (AKI), reintubation, and mortality. In order to effectively prevent these complications, high-risk patients must be readily identified. However, most current risk scores are designed to predic...
Guardado en:
Autores principales: | Ira S. Hofer, Christine Lee, Eilon Gabel, Pierre Baldi, Maxime Cannesson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9361958a0ed84b9b8b3995be232455af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality
por: Christine K. Lee, et al.
Publicado: (2021) -
A simulation-based evaluation of machine learning models for clinical decision support: application and analysis using hospital readmission
por: Velibor V. Mišić, et al.
Publicado: (2021) -
Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs)
por: Jennifer C. Goldsack, et al.
Publicado: (2020) -
Predicting COVID-19 mortality with electronic medical records
por: Hossein Estiri, et al.
Publicado: (2021) -
Evaluation framework to guide implementation of AI systems into healthcare settings
por: Enrico Coiera, et al.
Publicado: (2021)