A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, de...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:93667ca46ddd41e09df0a36ed00798d4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:93667ca46ddd41e09df0a36ed00798d42021-11-28T12:13:46ZA machine vision tool for facilitating the optimization of large-area perovskite photovoltaics10.1038/s41524-021-00657-82057-3960https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d42021-11-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00657-8https://doaj.org/toc/2057-3960Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow characterization steps essential for the multi-objective optimization of thin film deposition processes.Nina TaherimakhsousiMathilde FievezBenjamin P. MacLeodEdward P. BookerEmmanuelle FayardMuriel MatheronMatthieu ManceauStéphane CrosSolenn BersonCurtis P. BerlinguetteNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 Nina Taherimakhsousi Mathilde Fievez Benjamin P. MacLeod Edward P. Booker Emmanuelle Fayard Muriel Matheron Matthieu Manceau Stéphane Cros Solenn Berson Curtis P. Berlinguette A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics |
description |
Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow characterization steps essential for the multi-objective optimization of thin film deposition processes. |
format |
article |
author |
Nina Taherimakhsousi Mathilde Fievez Benjamin P. MacLeod Edward P. Booker Emmanuelle Fayard Muriel Matheron Matthieu Manceau Stéphane Cros Solenn Berson Curtis P. Berlinguette |
author_facet |
Nina Taherimakhsousi Mathilde Fievez Benjamin P. MacLeod Edward P. Booker Emmanuelle Fayard Muriel Matheron Matthieu Manceau Stéphane Cros Solenn Berson Curtis P. Berlinguette |
author_sort |
Nina Taherimakhsousi |
title |
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics |
title_short |
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics |
title_full |
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics |
title_fullStr |
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics |
title_full_unstemmed |
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics |
title_sort |
machine vision tool for facilitating the optimization of large-area perovskite photovoltaics |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d4 |
work_keys_str_mv |
AT ninataherimakhsousi amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT mathildefievez amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT benjaminpmacleod amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT edwardpbooker amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT emmanuellefayard amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT murielmatheron amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT matthieumanceau amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT stephanecros amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT solennberson amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT curtispberlinguette amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT ninataherimakhsousi machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT mathildefievez machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT benjaminpmacleod machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT edwardpbooker machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT emmanuellefayard machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT murielmatheron machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT matthieumanceau machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT stephanecros machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT solennberson machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics AT curtispberlinguette machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics |
_version_ |
1718408155530002432 |