A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics

Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nina Taherimakhsousi, Mathilde Fievez, Benjamin P. MacLeod, Edward P. Booker, Emmanuelle Fayard, Muriel Matheron, Matthieu Manceau, Stéphane Cros, Solenn Berson, Curtis P. Berlinguette
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:93667ca46ddd41e09df0a36ed00798d4
record_format dspace
spelling oai:doaj.org-article:93667ca46ddd41e09df0a36ed00798d42021-11-28T12:13:46ZA machine vision tool for facilitating the optimization of large-area perovskite photovoltaics10.1038/s41524-021-00657-82057-3960https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d42021-11-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00657-8https://doaj.org/toc/2057-3960Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow characterization steps essential for the multi-objective optimization of thin film deposition processes.Nina TaherimakhsousiMathilde FievezBenjamin P. MacLeodEdward P. BookerEmmanuelle FayardMuriel MatheronMatthieu ManceauStéphane CrosSolenn BersonCurtis P. BerlinguetteNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Nina Taherimakhsousi
Mathilde Fievez
Benjamin P. MacLeod
Edward P. Booker
Emmanuelle Fayard
Muriel Matheron
Matthieu Manceau
Stéphane Cros
Solenn Berson
Curtis P. Berlinguette
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
description Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow characterization steps essential for the multi-objective optimization of thin film deposition processes.
format article
author Nina Taherimakhsousi
Mathilde Fievez
Benjamin P. MacLeod
Edward P. Booker
Emmanuelle Fayard
Muriel Matheron
Matthieu Manceau
Stéphane Cros
Solenn Berson
Curtis P. Berlinguette
author_facet Nina Taherimakhsousi
Mathilde Fievez
Benjamin P. MacLeod
Edward P. Booker
Emmanuelle Fayard
Muriel Matheron
Matthieu Manceau
Stéphane Cros
Solenn Berson
Curtis P. Berlinguette
author_sort Nina Taherimakhsousi
title A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
title_short A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
title_full A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
title_fullStr A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
title_full_unstemmed A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
title_sort machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d4
work_keys_str_mv AT ninataherimakhsousi amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT mathildefievez amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT benjaminpmacleod amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT edwardpbooker amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT emmanuellefayard amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT murielmatheron amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT matthieumanceau amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT stephanecros amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT solennberson amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT curtispberlinguette amachinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT ninataherimakhsousi machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT mathildefievez machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT benjaminpmacleod machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT edwardpbooker machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT emmanuellefayard machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT murielmatheron machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT matthieumanceau machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT stephanecros machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT solennberson machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
AT curtispberlinguette machinevisiontoolforfacilitatingtheoptimizationoflargeareaperovskitephotovoltaics
_version_ 1718408155530002432