A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, de...
Guardado en:
Autores principales: | Nina Taherimakhsousi, Mathilde Fievez, Benjamin P. MacLeod, Edward P. Booker, Emmanuelle Fayard, Muriel Matheron, Matthieu Manceau, Stéphane Cros, Solenn Berson, Curtis P. Berlinguette |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unsupervised discovery of thin-film photovoltaic materials from unlabeled data
por: Zhilong Wang, et al.
Publicado: (2021) -
Machine learning for perovskite materials design and discovery
por: Qiuling Tao, et al.
Publicado: (2021) -
Electrode-induced impurities in tin halide perovskite solar cell material CsSnBr3 from first principles
por: Yuhang Liang, et al.
Publicado: (2021) -
Giant room temperature elastocaloric effect in metal-free thin-film perovskites
por: Cheng Li, et al.
Publicado: (2021) -
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
por: Pikee Priya, et al.
Publicado: (2021)