A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
Abstract We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, de...
Enregistré dans:
Auteurs principaux: | Nina Taherimakhsousi, Mathilde Fievez, Benjamin P. MacLeod, Edward P. Booker, Emmanuelle Fayard, Muriel Matheron, Matthieu Manceau, Stéphane Cros, Solenn Berson, Curtis P. Berlinguette |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/93667ca46ddd41e09df0a36ed00798d4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Unsupervised discovery of thin-film photovoltaic materials from unlabeled data
par: Zhilong Wang, et autres
Publié: (2021) -
Machine learning for perovskite materials design and discovery
par: Qiuling Tao, et autres
Publié: (2021) -
Electrode-induced impurities in tin halide perovskite solar cell material CsSnBr3 from first principles
par: Yuhang Liang, et autres
Publié: (2021) -
Giant room temperature elastocaloric effect in metal-free thin-film perovskites
par: Cheng Li, et autres
Publié: (2021) -
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
par: Pikee Priya, et autres
Publié: (2021)