The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete
The focus of this study is to investigate the applicability of Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) in modeling the compressive strength of Recycled Brick Aggregate Concrete (RBAC). A comparative study on the application...
Guardado en:
Autores principales: | Atefehossadat Khademi, Kiachehr Behfarnia, Tanja Kalman Šipoš, Ivana Miličević |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Pouyan Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9369efb9ae0e42238aced75ff08b4687 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Experimental Study on Mechanical Performance of Recycled Fine Aggregate Concrete Reinforced With Discarded Carbon Fibers
por: Osama Zaid, et al.
Publicado: (2021) -
Mechanical properties of roller compacted concrete containing recycled concrete aggregate
por: Hosseinnezhad,Hojjat, et al.
Publicado: (2021) -
Optimization of recycled concrete aggregate geopolymer bricks by Taguchi Method
por: Farouk Ghazy,Mariam
Publicado: (2020) -
Investigation the effect of Different Types of Recycled Concrete Aggregates on the Engineering Properties of Concrete
por: milad aghili lotf, et al.
Publicado: (2020) - Cement and concrete research