Ab initio determination of crystal stability of di-p-tolyl disulfide

Abstract With the rapid growth of energy demand and the depletion of existing energy resources, the new materials with superior performances, low costs and environmental friendliness for energy production and storage are explored. Di-p-tolyl disulfide (p-Tol2S2) is a typical lubricating material, wh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xuan Hao, Jinfeng Liu, Imran Ali, Hongyuan Luo, Yanqiang Han, Wenxin Hu, Jinyun Liu, Xiao He, Jinjin Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/938c613fe12f46a49b772e8481bf758a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract With the rapid growth of energy demand and the depletion of existing energy resources, the new materials with superior performances, low costs and environmental friendliness for energy production and storage are explored. Di-p-tolyl disulfide (p-Tol2S2) is a typical lubricating material, which has been applied in the field of energy storage. The conformational properties and phase transformations of p-Tol2S2 have been studied by pioneers, but their polymorphs and the polymorphism induced crystal structure changes require further analysis. In this study, we perform the crystal structural screening, prediction and optimization of p-Tol2S2 crystal with quantum mechanical calculations, i.e., density functional theory (DFT) and second-order Møller–Plesset perturbation (MP2) methods. A series of crystal structures with different molecular arrangements are generated based on the crystal structure screening. As compared to long-established lattice energy calculation, we take an advantage of using more accurate technique, which is Gibbs free energy calculation. It considers the effects of entropy and temperature to predict the crystal structures and energy landscape. By comparing the Gibbs free energies between predicted and experimental structures, we found that phase α is the most stable structure for p-Tol2S2 crystal at ambient temperature and standard atmospheric pressure. Furthermore, we provide an efficient method to discriminate different polymorphs that are otherwise difficult to be identified based on the Raman/IR spectra. The proposed work enable us to evaluate the quality of various crystal polymorphs rapidly.