Nitrogen Starvation Impacts the Photosynthetic Performance of Porphyridium cruentum as Revealed by Chlorophyll a Fluorescence

Abstract Nitrogen is one of the most important nutrients needed for plants and algae to survive, and the photosynthetic ability of algae is related to nitrogen abundance. Red algae are unique photosynthetic eukaryotic organisms in the evolution of algae, as they contain phycobilisomes (PBSs) on thei...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Long-Sheng Zhao, Kang Li, Qian-Min Wang, Xiao-Yan Song, Hai-Nan Su, Bin-Bin Xie, Xi-Ying Zhang, Feng Huang, Xiu-Lan Chen, Bai-Cheng Zhou, Yu-Zhong Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/938d16bca7a74c1f88921baca4fa9932
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Nitrogen is one of the most important nutrients needed for plants and algae to survive, and the photosynthetic ability of algae is related to nitrogen abundance. Red algae are unique photosynthetic eukaryotic organisms in the evolution of algae, as they contain phycobilisomes (PBSs) on their thylakoid membranes. In this report, the in vivo chlorophyll (Chl) a fluorescence kinetics of nitrogen-starved Porphyridium cruentum were analyzed to determine the effects of nitrogen deficiency on photosynthetic performance using a multi-color pulse amplitude modulation (PAM) chlorophyll fluorometer. Due to nitrogen starvation, the photochemical efficiency of PSII and the activity of PSII reaction centers (RCs) decreased, and photoinhibition of PSII occurred. The water-splitting system on the donor side of PSII was seriously impacted by nitrogen deficiency, leading to the inactivation of the oxygen-evolving complex (OEC) and decreased light energy conversion efficiency. In nitrogen-starved cells, a higher proportion of energy was used for photochemical reactions, and thermal dissipation was reduced, as shown by qP and qN. The ability of nitrogen-starved cells to tolerate and resist high photon flux densities was weakened. Our results showed that the photosynthetic performance of P. cruentum was severely impacted by nitrogen deficiency.