A new framework based on features modeling and ensemble learning to predict query performance.
A query optimizer attempts to predict a performance metric based on the amount of time elapsed. Theoretically, this would necessitate the creation of a significant overhead on the core engine to provide the necessary query optimizing statistics. Machine learning is increasingly being used to improve...
Guardado en:
Autores principales: | Mohamed Zaghloul, Mofreh Salem, Amr Ali-Eldin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93a82078903a4abc81004fe9f2cc23c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Selected Deep Learning Cancer Prediction Framework
por: Nadia G. Elseddeq, et al.
Publicado: (2021) -
Predicting seismic-induced liquefaction through ensemble learning frameworks
por: Mohammad H. Alobaidi, et al.
Publicado: (2019) -
Ensemble learning for the early prediction of neonatal jaundice with genetic features
por: Haowen Deng, et al.
Publicado: (2021) -
Translating synthetic natural language to database queries with a polyglot deep learning framework
por: Adrián Bazaga, et al.
Publicado: (2021) -
Student Performance Prediction with Optimum Multilabel Ensemble Model
por: Yekun Ephrem Admasu, et al.
Publicado: (2021)