A small number of abnormal brain connections predicts adult autism spectrum disorder
Autism spectrum disorder (ASD) is manifested by subtle but significant changes in the brain. Here, Yahata and colleagues devise a novel machine learning algorithm and develop a reliable ASD classifier based on brain functional connectivity, with which they quantitatively measure neuroimaging dimensi...
Guardado en:
Autores principales: | Noriaki Yahata, Jun Morimoto, Ryuichiro Hashimoto, Giuseppe Lisi, Kazuhisa Shibata, Yuki Kawakubo, Hitoshi Kuwabara, Miho Kuroda, Takashi Yamada, Fukuda Megumi, Hiroshi Imamizu, José E. Náñez Sr, Hidehiko Takahashi, Yasumasa Okamoto, Kiyoto Kasai, Nobumasa Kato, Yuka Sasaki, Takeo Watanabe, Mitsuo Kawato |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93b658df05cd497f85c55d9a81c0477d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A multi-site, multi-disorder resting-state magnetic resonance image database
por: Saori C. Tanaka, et al.
Publicado: (2021) -
A Neural Marker of Obsessive-Compulsive Disorder from Whole-Brain Functional Connectivity
por: Yu Takagi, et al.
Publicado: (2017) -
Preliminary evidence of altered neural response during intertemporal choice of losses in adult attention-deficit hyperactivity disorder
por: Saori C. Tanaka, et al.
Publicado: (2018) -
Science of recovery in schizophrenia research: brain and psychological substrates of personalized value
por: Kiyoto Kasai, et al.
Publicado: (2017) -
The DecNef collection, fMRI data from closed-loop decoded neurofeedback experiments
por: Aurelio Cortese, et al.
Publicado: (2021)