Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes

Abstract It has been proposed that dehydration embrittlement of hydrous materials can trigger intermediate-depth earthquakes and form a double seismic zone in a subducting slab. Seismic anisotropy may provide a possible insight into intermediate-depth intraslab seismicity, because anisotropic proper...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jian Wang, Dapeng Zhao, Zhenxing Yao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/93bf926994e8402faaa7678730fd29e6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:93bf926994e8402faaa7678730fd29e6
record_format dspace
spelling oai:doaj.org-article:93bf926994e8402faaa7678730fd29e62021-12-02T11:52:36ZSeismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes10.1038/s41598-017-02563-w2045-2322https://doaj.org/article/93bf926994e8402faaa7678730fd29e62017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02563-whttps://doaj.org/toc/2045-2322Abstract It has been proposed that dehydration embrittlement of hydrous materials can trigger intermediate-depth earthquakes and form a double seismic zone in a subducting slab. Seismic anisotropy may provide a possible insight into intermediate-depth intraslab seismicity, because anisotropic properties of minerals change with varying water distribution, temperature and pressure. Here we present a high-resolution model of P-wave radial anisotropy tomography of the Japan subduction zone down to ~400 km depth, which is obtained using a large number of arrival-time data of local earthquakes and teleseismic events. Our results reveal a close correlation between the pattern of intermediate-depth seismicity and anisotropic structures. The seismicity occurs in portions of the Pacific and Philippine Sea slabs where positive radial anisotropy (i.e., horizontal velocity being faster than vertical one) dominates due to dehydration, whereas the inferred anhydrous parts of the slabs are found to be aseismic where negative radial anisotropy (i.e., vertical velocity being faster than horizontal one) dominates. Our anisotropic results suggest that intermediate-depth earthquakes in Japan could be triggered by dehydration embrittlement of hydrous minerals in the subducting slabs.Jian WangDapeng ZhaoZhenxing YaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jian Wang
Dapeng Zhao
Zhenxing Yao
Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes
description Abstract It has been proposed that dehydration embrittlement of hydrous materials can trigger intermediate-depth earthquakes and form a double seismic zone in a subducting slab. Seismic anisotropy may provide a possible insight into intermediate-depth intraslab seismicity, because anisotropic properties of minerals change with varying water distribution, temperature and pressure. Here we present a high-resolution model of P-wave radial anisotropy tomography of the Japan subduction zone down to ~400 km depth, which is obtained using a large number of arrival-time data of local earthquakes and teleseismic events. Our results reveal a close correlation between the pattern of intermediate-depth seismicity and anisotropic structures. The seismicity occurs in portions of the Pacific and Philippine Sea slabs where positive radial anisotropy (i.e., horizontal velocity being faster than vertical one) dominates due to dehydration, whereas the inferred anhydrous parts of the slabs are found to be aseismic where negative radial anisotropy (i.e., vertical velocity being faster than horizontal one) dominates. Our anisotropic results suggest that intermediate-depth earthquakes in Japan could be triggered by dehydration embrittlement of hydrous minerals in the subducting slabs.
format article
author Jian Wang
Dapeng Zhao
Zhenxing Yao
author_facet Jian Wang
Dapeng Zhao
Zhenxing Yao
author_sort Jian Wang
title Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes
title_short Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes
title_full Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes
title_fullStr Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes
title_full_unstemmed Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes
title_sort seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/93bf926994e8402faaa7678730fd29e6
work_keys_str_mv AT jianwang seismicanisotropyevidencefordehydrationembrittlementtriggeringintermediatedepthearthquakes
AT dapengzhao seismicanisotropyevidencefordehydrationembrittlementtriggeringintermediatedepthearthquakes
AT zhenxingyao seismicanisotropyevidencefordehydrationembrittlementtriggeringintermediatedepthearthquakes
_version_ 1718394996646739968