On non-normal cyclic subgroups of prime order or order 4 of finite groups
In this paper, we call a finite group GG an NLMNLM-group (NCMNCM-group, respectively) if every non-normal cyclic subgroup of prime order or order 4 (prime power order, respectively) in GG is contained in a non-normal maximal subgroup of GG. Using the property of NLMNLM-groups and NCMNCM-groups, we g...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93bfaa4ff88f45be96cf359eed29f607 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:93bfaa4ff88f45be96cf359eed29f607 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:93bfaa4ff88f45be96cf359eed29f6072021-12-05T14:10:52ZOn non-normal cyclic subgroups of prime order or order 4 of finite groups2391-545510.1515/math-2021-0012https://doaj.org/article/93bfaa4ff88f45be96cf359eed29f6072021-03-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0012https://doaj.org/toc/2391-5455In this paper, we call a finite group GG an NLMNLM-group (NCMNCM-group, respectively) if every non-normal cyclic subgroup of prime order or order 4 (prime power order, respectively) in GG is contained in a non-normal maximal subgroup of GG. Using the property of NLMNLM-groups and NCMNCM-groups, we give a new necessary and sufficient condition for GG to be a solvable TT-group (normality is a transitive relation), some sufficient conditions for GG to be supersolvable, and the classification of those groups whose all proper subgroups are NLMNLM-groups.Guo PengfeiHan ZhangjiaDe Gruyterarticlenormal subgroupsminimal subgroupsmaximal subgroupssupersolvable groupst-groups20e3420f16MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 63-68 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
normal subgroups minimal subgroups maximal subgroups supersolvable groups t-groups 20e34 20f16 Mathematics QA1-939 |
spellingShingle |
normal subgroups minimal subgroups maximal subgroups supersolvable groups t-groups 20e34 20f16 Mathematics QA1-939 Guo Pengfei Han Zhangjia On non-normal cyclic subgroups of prime order or order 4 of finite groups |
description |
In this paper, we call a finite group GG an NLMNLM-group (NCMNCM-group, respectively) if every non-normal cyclic subgroup of prime order or order 4 (prime power order, respectively) in GG is contained in a non-normal maximal subgroup of GG. Using the property of NLMNLM-groups and NCMNCM-groups, we give a new necessary and sufficient condition for GG to be a solvable TT-group (normality is a transitive relation), some sufficient conditions for GG to be supersolvable, and the classification of those groups whose all proper subgroups are NLMNLM-groups. |
format |
article |
author |
Guo Pengfei Han Zhangjia |
author_facet |
Guo Pengfei Han Zhangjia |
author_sort |
Guo Pengfei |
title |
On non-normal cyclic subgroups of prime order or order 4 of finite groups |
title_short |
On non-normal cyclic subgroups of prime order or order 4 of finite groups |
title_full |
On non-normal cyclic subgroups of prime order or order 4 of finite groups |
title_fullStr |
On non-normal cyclic subgroups of prime order or order 4 of finite groups |
title_full_unstemmed |
On non-normal cyclic subgroups of prime order or order 4 of finite groups |
title_sort |
on non-normal cyclic subgroups of prime order or order 4 of finite groups |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/93bfaa4ff88f45be96cf359eed29f607 |
work_keys_str_mv |
AT guopengfei onnonnormalcyclicsubgroupsofprimeorderororder4offinitegroups AT hanzhangjia onnonnormalcyclicsubgroupsofprimeorderororder4offinitegroups |
_version_ |
1718371649388019712 |