On non-normal cyclic subgroups of prime order or order 4 of finite groups

In this paper, we call a finite group GG an NLMNLM-group (NCMNCM-group, respectively) if every non-normal cyclic subgroup of prime order or order 4 (prime power order, respectively) in GG is contained in a non-normal maximal subgroup of GG. Using the property of NLMNLM-groups and NCMNCM-groups, we g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guo Pengfei, Han Zhangjia
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/93bfaa4ff88f45be96cf359eed29f607
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:93bfaa4ff88f45be96cf359eed29f607
record_format dspace
spelling oai:doaj.org-article:93bfaa4ff88f45be96cf359eed29f6072021-12-05T14:10:52ZOn non-normal cyclic subgroups of prime order or order 4 of finite groups2391-545510.1515/math-2021-0012https://doaj.org/article/93bfaa4ff88f45be96cf359eed29f6072021-03-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0012https://doaj.org/toc/2391-5455In this paper, we call a finite group GG an NLMNLM-group (NCMNCM-group, respectively) if every non-normal cyclic subgroup of prime order or order 4 (prime power order, respectively) in GG is contained in a non-normal maximal subgroup of GG. Using the property of NLMNLM-groups and NCMNCM-groups, we give a new necessary and sufficient condition for GG to be a solvable TT-group (normality is a transitive relation), some sufficient conditions for GG to be supersolvable, and the classification of those groups whose all proper subgroups are NLMNLM-groups.Guo PengfeiHan ZhangjiaDe Gruyterarticlenormal subgroupsminimal subgroupsmaximal subgroupssupersolvable groupst-groups20e3420f16MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 63-68 (2021)
institution DOAJ
collection DOAJ
language EN
topic normal subgroups
minimal subgroups
maximal subgroups
supersolvable groups
t-groups
20e34
20f16
Mathematics
QA1-939
spellingShingle normal subgroups
minimal subgroups
maximal subgroups
supersolvable groups
t-groups
20e34
20f16
Mathematics
QA1-939
Guo Pengfei
Han Zhangjia
On non-normal cyclic subgroups of prime order or order 4 of finite groups
description In this paper, we call a finite group GG an NLMNLM-group (NCMNCM-group, respectively) if every non-normal cyclic subgroup of prime order or order 4 (prime power order, respectively) in GG is contained in a non-normal maximal subgroup of GG. Using the property of NLMNLM-groups and NCMNCM-groups, we give a new necessary and sufficient condition for GG to be a solvable TT-group (normality is a transitive relation), some sufficient conditions for GG to be supersolvable, and the classification of those groups whose all proper subgroups are NLMNLM-groups.
format article
author Guo Pengfei
Han Zhangjia
author_facet Guo Pengfei
Han Zhangjia
author_sort Guo Pengfei
title On non-normal cyclic subgroups of prime order or order 4 of finite groups
title_short On non-normal cyclic subgroups of prime order or order 4 of finite groups
title_full On non-normal cyclic subgroups of prime order or order 4 of finite groups
title_fullStr On non-normal cyclic subgroups of prime order or order 4 of finite groups
title_full_unstemmed On non-normal cyclic subgroups of prime order or order 4 of finite groups
title_sort on non-normal cyclic subgroups of prime order or order 4 of finite groups
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/93bfaa4ff88f45be96cf359eed29f607
work_keys_str_mv AT guopengfei onnonnormalcyclicsubgroupsofprimeorderororder4offinitegroups
AT hanzhangjia onnonnormalcyclicsubgroupsofprimeorderororder4offinitegroups
_version_ 1718371649388019712