Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects
The Voronoi design was utilized for a biodegradable patient-specific bone scaffold with macro pores (>4 mm) for the surgical treatment of a critical-sized bone defect. We have focused on the relationship between scaffold design and mechanical properties. Through a combination of experiments and s...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93db452a25c64b8e909e3bbcc6a23baa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:93db452a25c64b8e909e3bbcc6a23baa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:93db452a25c64b8e909e3bbcc6a23baa2021-11-28T04:27:40ZMechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects0264-127510.1016/j.matdes.2021.110224https://doaj.org/article/93db452a25c64b8e909e3bbcc6a23baa2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0264127521007796https://doaj.org/toc/0264-1275The Voronoi design was utilized for a biodegradable patient-specific bone scaffold with macro pores (>4 mm) for the surgical treatment of a critical-sized bone defect. We have focused on the relationship between scaffold design and mechanical properties. Through a combination of experiments and simulations and have presented morphological and mechanical property maps of scaffold designs based on the Voronoi tessellation. Fused filament fabrication (FFF) was explored as the method of fabrication and prototypes were printed in commercial grade Polylactic Acid (PLA). The subsequent in-silico morphology assessment revealed that the pore sizes ranged from 4.0 to 11.8 mm with a total porosity of 71%. The morphological maps capture the distinct geometry shift between as-designed and as-manufactured scaffolds with an average agreement of 76% where most of the deviations were caused by complications innate to 3D printing. Finite element method models were developed to evaluate mechanical properties and the failure locations of the scaffold were accurately predicted, which was validated by the subsequent quasi-static compression test. This study revealed the potential of the Voronoi tessellation to design patient specific bone scaffolds with macro pore sizes that mimic trabecular bone geometry and concluded that FFF is a suitable method of fabrication for it.Buddhi HerathSinduja SureshDavid DowningSilvia ComettaRance TinoNathan J. CastroMartin LearyBeat SchmutzMarie-Luise WilleDietmar W. HutmacherElsevierarticleVoronoiBone scaffoldFused filament fabricationPatient-specificQuality assessmentMaterials of engineering and construction. Mechanics of materialsTA401-492ENMaterials & Design, Vol 212, Iss , Pp 110224- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Voronoi Bone scaffold Fused filament fabrication Patient-specific Quality assessment Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Voronoi Bone scaffold Fused filament fabrication Patient-specific Quality assessment Materials of engineering and construction. Mechanics of materials TA401-492 Buddhi Herath Sinduja Suresh David Downing Silvia Cometta Rance Tino Nathan J. Castro Martin Leary Beat Schmutz Marie-Luise Wille Dietmar W. Hutmacher Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects |
description |
The Voronoi design was utilized for a biodegradable patient-specific bone scaffold with macro pores (>4 mm) for the surgical treatment of a critical-sized bone defect. We have focused on the relationship between scaffold design and mechanical properties. Through a combination of experiments and simulations and have presented morphological and mechanical property maps of scaffold designs based on the Voronoi tessellation. Fused filament fabrication (FFF) was explored as the method of fabrication and prototypes were printed in commercial grade Polylactic Acid (PLA). The subsequent in-silico morphology assessment revealed that the pore sizes ranged from 4.0 to 11.8 mm with a total porosity of 71%. The morphological maps capture the distinct geometry shift between as-designed and as-manufactured scaffolds with an average agreement of 76% where most of the deviations were caused by complications innate to 3D printing. Finite element method models were developed to evaluate mechanical properties and the failure locations of the scaffold were accurately predicted, which was validated by the subsequent quasi-static compression test. This study revealed the potential of the Voronoi tessellation to design patient specific bone scaffolds with macro pore sizes that mimic trabecular bone geometry and concluded that FFF is a suitable method of fabrication for it. |
format |
article |
author |
Buddhi Herath Sinduja Suresh David Downing Silvia Cometta Rance Tino Nathan J. Castro Martin Leary Beat Schmutz Marie-Luise Wille Dietmar W. Hutmacher |
author_facet |
Buddhi Herath Sinduja Suresh David Downing Silvia Cometta Rance Tino Nathan J. Castro Martin Leary Beat Schmutz Marie-Luise Wille Dietmar W. Hutmacher |
author_sort |
Buddhi Herath |
title |
Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects |
title_short |
Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects |
title_full |
Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects |
title_fullStr |
Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects |
title_full_unstemmed |
Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects |
title_sort |
mechanical and geometrical study of 3d printed voronoi scaffold design for large bone defects |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/93db452a25c64b8e909e3bbcc6a23baa |
work_keys_str_mv |
AT buddhiherath mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT sindujasuresh mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT daviddowning mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT silviacometta mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT rancetino mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT nathanjcastro mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT martinleary mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT beatschmutz mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT marieluisewille mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects AT dietmarwhutmacher mechanicalandgeometricalstudyof3dprintedvoronoiscaffolddesignforlargebonedefects |
_version_ |
1718408394276077568 |