Experimental Demonstration of Four-Dimensional Photonic Spatial Entanglement between Multi-core Optical Fibres
Abstract Fibre transport of multi-dimensional photonic quantum states promises high information capacity per photon without space restriction. This work experimentally demonstrates transmission of spatial ququarts through multi-core optical fibres and measurement of the entanglement between two fibr...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93dfbe7fcce1430b90c495351abf8a92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Fibre transport of multi-dimensional photonic quantum states promises high information capacity per photon without space restriction. This work experimentally demonstrates transmission of spatial ququarts through multi-core optical fibres and measurement of the entanglement between two fibres with quantum state analyzers, each composed of a spatial light modulator and a single-mode fibre. Quantum state tomography reconstructs the four-dimension entangled state that verifies the nonlocality through concurrences in two-dimensional subspaces, a lower bound of four-dimensional concurrence and a Bell-type CGLMP inequality. |
---|