Robust analysis of the central tendency, simple and multiple regression and ANOVA: a step by step tutorial.
After much exertion and care to run an experiment in social science, the analysis of data should not be ruined by an improper analysis. Often, classical methods, like the mean, the usual simple and multiple linear regressions, and the ANOVA require normality and absence of outliers, which rarely occ...
Guardado en:
Autores principales: | Delphine S. Courvoisier, Olivier Renaud |
---|---|
Formato: | article |
Lenguaje: | EN ES |
Publicado: |
Universidad de San Buenaventura
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93e0a032994043bb950396f69fe18e0a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Local influence when fitting Gaussian spatial linear models: an agriculture application
por: Grzegozewski,Denise M, et al.
Publicado: (2013) -
Detection of Influential Observations in Spatial Regression Model Based on Outliers and Bad Leverage Classification
por: Ali Mohammed Baba, et al.
Publicado: (2021) -
Investigation of mechanical properties of polymer impregnated concrete containing polypropylene fiber by taguchi and anova methods
por: Tanyildizi,Harun
Publicado: (2021) -
Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
por: Ishaq Adeyanju Raji, et al.
Publicado: (2021) -
Outliers detection and treatment: a review.
por: Denis Cousineau, et al.
Publicado: (2010)