Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug rep...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/93e763bd3055417ea9c559a7b6fa24d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have provided largely negative results, so far. Here, the authors present a machine learning framework that quantifies potential associations between the pathology of AD severity and gene-based molecular mechanisms to enable drug repurposing. |
---|